Microchimica Acta

, Volume 184, Issue 5, pp 1555–1564 | Cite as

Magnetic metal-organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP-AES

  • Meysam Safari
  • Yadollah Yamini
  • Mohammad Yaser Masoomi
  • Ali Morsali
  • Ahmad Mani-Varnosfaderani
Original Paper


The authors describe the preparation of two kinds of metal-organic frameworks (MOFs), referred to as TMU-8 and TMU-9. The MOFs were applied to the preconcentration of the ions Co(II), Cu(II), Pb(II), Cd(II), Ni(II), Cr(III), and Mn(II) from aqueous solutions. The roles of the azine groups in TMU-8 (in comparison to TMU-9 which does not have an azine group) and the role of void spaces of these MOFs toward the adsorption of metal ions also are evaluated. The studies reveal that TMU-8 has a better adsorption capability than TMU-9. A magnetic TMU-8 was then fabricated by in-situ synthesis of a magnetic core-shell nanocomposite. The material was chosen as an efficient sorbent for the preconcentration of the above metal ions, followed by their determination by flow injection inductively coupled plasma atomic emission spectrometry. The assay was optimized using a combination of central composite design (CCD) and a Bayesian regularized artificial neural network (BRANN) technique. Under optimal conditions, the preconcentration factors are in the range between 66 and 232, and detection limits are as low as 0.3 to 1 μg ⋅L−1. The relative standard deviations are <6.4% (for n = 3; at 50 μg ⋅ L−1). Real samples were analyzed, and the results demonstrate that such core-shell magnetic microspheres are promising sorbents for rapid and efficient extraction of heavy metal ions from complex samples.

Graphical abstract

New magnetic metal organic frame works were synthesized and applied to the preconcentration of the ions Co(II), Cu(II), Pb(II), Cd(II), Ni(II), Cr(III) and Mn(II).


Preconcentration Magnetic MOF Tem, PXRD BRANN modeling MSPE Cu(II) Pb(II) Cd(II) Cr(III) 



The authors gratefully acknowledge financial support from Tarbiat Modares University.

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2017_2133_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1071 kb)


  1. 1.
    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444-1-1230444-12. doi: 10.1126/science.1230444
  2. 2.
    Meek ST, Greathouse JA, Allendorf MD (2011) Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater 23(2):249–267. doi: 10.1002/adma.201002854 CrossRefGoogle Scholar
  3. 3.
    Zhao Y, Seredych M, Zhong Q, Bandosz TJ (2013) Superior performancef of copper based MOF and aminated graphite oxide composites as CO2 adsorbents at room temperature. ACS Appl Mater Interfaces 5(11):4951–4959. doi: 10.1021/am4006989 CrossRefGoogle Scholar
  4. 4.
    Suh MP, Park HJ, Prasad TK, Lim D-W (2012) Hydrogen storage in metal–organic frameworks. Chem Rev 112(2):782–835. doi: 10.1021/cr200274s CrossRefGoogle Scholar
  5. 5.
    Li J-R, Sculley J, Zhou H-C (2012) Metal–organic frameworks for separations. Chem Rev 112(2):869–932. doi: 10.1021/cr200190s CrossRefGoogle Scholar
  6. 6.
    Cui X-Y, Gu Z-Y, Jiang D-Q, Li Y, Wang H-F, Yan X-P (2009) In situ hydrothermal growth of metal−organic framework films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues. Anal Chem 81(23):9771–9777. doi: 10.1021/ac901663x CrossRefGoogle Scholar
  7. 7.
    Trung TK, Trens P, Tanchoux N, Bourrelly S, Llewellyn PL, Loera-Serna S, Serre C, Loiseau T, Fajula F, Férey G (2008) Hydrocarbon adsorption in the flexible metal organic frameworks MIL-53(Al, Cr). J Am Chem Soc 130(50):16926–16932. doi: 10.1021/ja8039579 CrossRefGoogle Scholar
  8. 8.
    Tahmasebi E, Masoomi MY, Yamini Y, Morsali A (2015) Application of mechanosynthesized azine-decorated zinc(II) metal–organic frameworks for highly efficient removal and extraction of some heavy-metal ions from aqueous samples: a comparative study. Inorg Chem 54(2):425–433. doi: 10.1021/ic5015384 CrossRefGoogle Scholar
  9. 9.
    Gu Z-Y, Chen Y-J, Jiang J-Q, Yan X-P (2011) Metal-organic frameworks for efficient enrichment of peptides with simultaneous exclusion of proteins from complex biological samples. Chem Commun 47(16):4787–4789. doi: 10.1039/C1CC10579E CrossRefGoogle Scholar
  10. 10.
    Gu Z-Y, Wang G, Yan X-P (2010) MOF-5 metal−organic framework as sorbent for in-field sampling and preconcentration in combination with thermal desorption GC/MS for determination of atmospheric formaldehyde. Anal Chem 82(4):1365–1370. doi: 10.1021/ac902450f CrossRefGoogle Scholar
  11. 11.
    Tuzen M, Soylak M (2009) Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations. J Hazard Mater 162(2–3):724–729. doi: 10.1016/j.jhazmat.2008.05.087 CrossRefGoogle Scholar
  12. 12.
    Divrikli U, Kartal AA, Soylak M, Elci L (2007) Preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations. J Hazard Mater 145(3):459–464. doi: 10.1016/j.jhazmat.2006.11.040 CrossRefGoogle Scholar
  13. 13.
    Soylak M, Unsal YE, Kizil N, Aydin A (2010) Utilization of membrane filtration for preconcentration and determination of Cu(II) and Pb(II) in food, water and geological samples by atomic absorption spectrometry. Food Chem Toxicol 48(2):517–521. doi: 10.1016/j.fct.2009.11.005 CrossRefGoogle Scholar
  14. 14.
    Zhang N, Peng H, Wang S, Hu B (2011) Fast and selective magnetic solid phase extraction of trace Cd, Mn and Pb in environmental and biological samples and their determination by ICP-MS. Microchim Acta 175(1):121–128. doi: 10.1007/s00604-011-0659-3 CrossRefGoogle Scholar
  15. 15.
    Zhang L, Chang X, Hu Z, Zhang L, Shi J, Gao R (2010) Selective solid phase extraction and preconcentration of mercury(II) from environmental and biological samples using nanometer silica functionalized by 2,6-pyridine dicarboxylic acid. Microchim Acta 168(1):79–85. doi: 10.1007/s00604-009-0261-0 CrossRefGoogle Scholar
  16. 16.
    Rocío-Bautista P, Martínez-Benito C, Pino V, Pasán J, Ayala JH, Ruiz-Pérez C, Afonso AM (2015) The metal–organic framework HKUST-1 as efficient sorbent in a vortex-assisted dispersive micro solid-phase extraction of parabens from environmental waters, cosmetic creams, and human urine. Talanta 139:13–20. doi: 10.1016/j.talanta.2015.02.032 CrossRefGoogle Scholar
  17. 17.
    Salarian M, Ghanbarpour A, Behbahani M, Bagheri S, Bagheri A (2014) A metal-organic framework sustained by a nanosized Ag12 cuboctahedral node for solid-phase extraction of ultra traces of lead(II) ions. Microchim Acta 181(9):999–1007. doi: 10.1007/s00604-014-1200-2 CrossRefGoogle Scholar
  18. 18.
    Bagheri H, Yamini Y, Safari M, Asiabi H, Karimi M, Heydari A (2016) Simultaneous determination of pyrethroids residues in fruit and vegetable samples via supercritical fluid extraction coupled with magnetic solid phase extraction followed by HPLC-UV. J Supercrit Fluids 107:571–580. doi: 10.1016/j.supflu.2015.07.017 CrossRefGoogle Scholar
  19. 19.
    Safari M, Yamini Y, Tahmasebi E, Ebrahimpour B (2016) Magnetic nanoparticle assisted supramolecular solvent extraction of triazine herbicides prior to their determination by HPLC with UV detection. Microchim Acta 183(1):203–210. doi: 10.1007/s00604-015-1607-4 CrossRefGoogle Scholar
  20. 20.
    Asgharinezhad AA, Mollazadeh N, Ebrahimzadeh H, Mirbabaei F, Shekari N (2014) Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for coextraction of acidic and basic drugs from biological fluids and waste water. J Chromatogr A 1338:1–8. doi: 10.1016/j.chroma.2014.02.027 CrossRefGoogle Scholar
  21. 21.
    Ricco R, Malfatti L, Takahashi M, Hill AJ, Falcaro P (2013) Applications of magnetic metal-organic framework composites. J Mater Chem A 1(42):13033–13045. doi: 10.1039/C3TA13140H CrossRefGoogle Scholar
  22. 22.
    Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112(2):933–969. doi: 10.1021/cr200304e CrossRefGoogle Scholar
  23. 23.
    Faustini M, Kim J, Jeong G-Y, Kim JY, Moon HR, Ahn W-S, Kim D-P (2013) Microfluidic approach toward continuous and ultrafast synthesis of metal–organic framework crystals and hetero structures in confined microdroplets. J Am Chem Soc 135(39):14619–14626. doi: 10.1021/ja4039642 CrossRefGoogle Scholar
  24. 24.
    Arai T, Sato T, Kanoh H, Kaneko K, Oguma K, Yanagisawa A (2008) Organic–inorganic hybrid polymer-encapsulated magnetic nanobead catalysts. Chem Eur J 14(3):882–885. doi: 10.1002/chem.200701371 CrossRefGoogle Scholar
  25. 25.
    Shekhah O, Wang H, Kowarik S, Schreiber F, Paulus M, Tolan M, Sternemann C, Evers F, Zacher D, Fischer RA, Wöll C (2007) Step-by-step route for the synthesis of metal−organic frameworks. J Am Chem Soc 129(49):15118–15119. doi: 10.1021/ja076210u CrossRefGoogle Scholar
  26. 26.
    Jalali-Heravi M, Mani-Varnosfaderani A (2009) QSAR modeling of 1-(3,3-diphenylpropyl)-piperidinyl amides as CCR5 modulators using multivariate adaptive regression spline and bayesian regularized genetic neural networks. QSAR Comb Sci 28(9):946–958. doi: 10.1002/qsar.200860136 CrossRefGoogle Scholar
  27. 27.
    Burden FR (1999) Robust QSAR models using Bayesian regularized neural networks. J Med Chem 42(16):3183–3187. doi: 10.1021/jm980697n CrossRefGoogle Scholar
  28. 28.
    Ciurtin DM, Dong Y-B, Smith MD, Barclay T, zur Loye H-C (2001) Two versatile N,N‘-bipyridine-type ligands for preparing organic−inorganic coordination polymers: New cobalt- and nickel-containing framework materials. Inorg Chem 40 (12):2825–2834. doi: 10.1021/ic0014336
  29. 29.
    Masoomi MY, Morsali A, Junk PC (2015) Rapid mechanochemical synthesis of two new Cd(II)-based metal-organic frameworks with high removal efficiency of Congo red. Cryst Eng Comm 17(3):686–692. doi: 10.1039/C4CE01783H CrossRefGoogle Scholar
  30. 30.
    Ghorbani-Kalhor E (2016) A metal-organic framework nanocomposite made from functionalized magnetite nanoparticles and HKUST-1 (MOF-199) for preconcentration of Cd(II), Pb(II), and Ni(II). Microchim Acta 183(9):2639–2647. doi: 10.1007/s00604-016-1896-2 CrossRefGoogle Scholar
  31. 31.
    Moradi SE, Haji Shabani AM, Dadfarnia S, Emami S (2016) Sulfonated metal organic framework loaded on iron oxide nanoparticles as a new sorbent for the magnetic solid phase extraction of cadmium from environmental water samples. Anal Methods 8(33):6337–6346. doi: 10.1039/C6AY01692H CrossRefGoogle Scholar
  32. 32.
    Wang Y, Chen H, Tang J, Ye G, Ge H, Hu X (2015) Preparation of magnetic metal organic frameworks adsorbent modified with mercapto groups for the extraction and analysis of lead in food samples by flame atomic absorption spectrometry. Food Chem 181:191–197. doi: 10.1016/j.foodchem.2015.02.080 CrossRefGoogle Scholar
  33. 33.
    Sohrabi MR, Matbouie Z, Asgharinezhad AA, Dehghani A (2013) Solid phase extraction of Cd(II) and Pb(II) using a magnetic metal-organic framework, and their determination by FAAS. Microchim Acta 180(7):589–597. doi: 10.1007/s00604-013-0952-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Meysam Safari
    • 1
  • Yadollah Yamini
    • 1
  • Mohammad Yaser Masoomi
    • 1
  • Ali Morsali
    • 1
  • Ahmad Mani-Varnosfaderani
    • 1
  1. 1.Department of ChemistryTarbiat Modares UniversityTehranIran

Personalised recommendations