Microchimica Acta

, Volume 184, Issue 5, pp 1305–1313 | Cite as

A universal electrochemical biosensor for the highly sensitive determination of microRNAs based on isothermal target recycling amplification and a DNA signal transducer triggered reaction

  • Lili Zhou
  • Jian Wang
  • Zhongping Chen
  • Junlong Li
  • Ting Wang
  • Zhang Zhang
  • Guoming Xie
Original Paper

Abstract

MicroRNAs (miRNAs) play a considerable role in cancer occurrence and development, and have been identified as promising noninvasive biomarkers. The authors describe a voltammetric method for the determination of the cancer biomarker microRNA-21 (miRNA). It is based on a combination of a universal DNA signal transducer and isothermal target recycling amplification. A hairpin capture probe is bound to the target miRNA to form a duplex structure and to create a toehold in the transducer for initiating the target recycling amplification reaction. In contrast to traditional capture probes, a mismatched site is introduced to improve its ability to capture the target. In order to reduce the complex design procedures of the sequence and widen the applicability of this method, a signal transducer is introduced. Under optimal conditions, response to target miRNA is linear in the 0.5 to 2000 pM concentration range, with a 56 fM. detection limit (at an S/N ratio of 3). In order to characterize the process of target recycling and the stepwise modification of the electrode, real-time fluorescence, agarose gel electrophoresis, cyclic voltammetry, electrochemical impedance spectroscopy and chronocoulometry were used. The results indicate that this isothermal target recycling amplification results in an electrochemical biosensing scheme with wide potential for sensing other bioanalytes.

Graphical abstract

Schematic illustration of the electrochemical biosensing platform for miRNA-21 detection based on isothermal target recycling amplification and DNA signal transducer triggered strategy.

Keywords

Cancer biomarker Isothermal target recycling DNA signal transduction Hairpin capture probe Catalytic hairpin assembly Electrochemical bioassay 

Notes

Acknowledgements

This work was financially supported by the Natural Science Research Foundation of China (No. 81672112), Chongqing medical scientific research projects (20142167) and the Chongqing Yuzhong District Science and Technology Project (20140108).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2017_2129_MOESM1_ESM.docx (647 kb)
ESM 1 (DOCX 647 kb)

References

  1. 1.
    Brindle K (2008) New approaches for imaging tumour responses to treatment. Nat Rev Cancer 8(2):94–107CrossRefGoogle Scholar
  2. 2.
    Sidransky D (1997) Nucleic acid-based methods for the detection of cancer. Science 278(5340):1054–1058CrossRefGoogle Scholar
  3. 3.
    Cullen BR (2004) Transcription and processing of human microRNA precursors. Mol Cell 16(6):861–865CrossRefGoogle Scholar
  4. 4.
    Wei Y, Zhou W, Li X, Chai Y, Yuan R, Xiang Y (2016) Coupling hybridization chain reaction with catalytic hairpin assembly enables non-enzymatic and sensitive fluorescent detection of microRNA cancer biomarkers. Biosens Bioelectron 77:416–420CrossRefGoogle Scholar
  5. 5.
    He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531CrossRefGoogle Scholar
  6. 6.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefGoogle Scholar
  7. 7.
    Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460(7254):479–486Google Scholar
  8. 8.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233CrossRefGoogle Scholar
  9. 9.
    Farh KK-H, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310(5755):1817–1821CrossRefGoogle Scholar
  10. 10.
    Azad FM, Naeli P, Malakootian M, Baradaran A, Tavallaei M, Ghanei M, Mowla S (2016) Two lung development-related microRNAs, miR-134 and miR-187, are differentially expressed in lung tumors. Gene 577(2):221–226CrossRefGoogle Scholar
  11. 11.
    Png KJ, Halberg N, Yoshida M, Tavazoie SF (2012) A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 481(7380):190–194CrossRefGoogle Scholar
  12. 12.
    Yu D-C, Li Q-G, Ding X-W, Ding Y-T (2011) Circulating microRNAs: potential biomarkers for cancer. Int J Mol Sci 12(3):2055–2063CrossRefGoogle Scholar
  13. 13.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838CrossRefGoogle Scholar
  14. 14.
    Peng S, Zeng X, Li X, Peng X, Chen L (2009) Multi-class cancer classification through gene expression profiles: microRNA versus mRNA. J Genet Genom 36(7):409–416CrossRefGoogle Scholar
  15. 15.
    Kumar S, Keerthana R, Pazhanimuthu A, Perumal P (2010) Overexpression of circulating miRNA-21 and miRNA-146a in plasma samples of breast cancer patients. Indian J Biochem Biophys 50(3):210–214Google Scholar
  16. 16.
    Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE, Hoon DS (2011) Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem 57(1):84–91CrossRefGoogle Scholar
  17. 17.
    Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32(22):e175–e175CrossRefGoogle Scholar
  18. 18.
    Verdoy D, Barrenetxea Z, Berganzo J, Agirregabiria M, Ruano-López JM, Marimón JM, Olabarría G (2012) A novel real time micro PCR based point-of-care device for salmonella detection in human clinical samples. Biosens Bioelectron 32(1):259–265CrossRefGoogle Scholar
  19. 19.
    Wang Q, Li Q, Yang X, Wang K, Du S, Zhang H, Nie Y (2016) Graphene oxide–gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA. Biosens Bioelectron 77:1001–1007CrossRefGoogle Scholar
  20. 20.
    Pourmand N, Caramuta S, Villablanca A, Mori S, Karhanek M, Wang SX, Davis RW (2007) Branch migration displacement assay with automated heuristic analysis for discrete DNA length measurement using DNA microarrays. Proc Natl Acad Sci U S A 104(15):6146–6151CrossRefGoogle Scholar
  21. 21.
    Xu M, He Y, Gao Z, Chen G, Tang D (2015) Isothermal cycling and cascade signal amplification strategy for ultrasensitive colorimetric detection of nucleic acids. Microchim Acta 182(1–2):449–454CrossRefGoogle Scholar
  22. 22.
    Wang F, Lu C-H, Willner I (2014) From cascaded catalytic nucleic acids to enzyme–DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem Rev 114(5):2881–2941CrossRefGoogle Scholar
  23. 23.
    Sun A-L, Zhang Y-F, Wang X-N (2015) Sensitive voltammetric determination of DNA via a target-induced strand-displacement reaction using quantum dot-labeled probe DNA. Microchim Acta 182(7–8):1403–1410CrossRefGoogle Scholar
  24. 24.
    Hsieh K, Patterson AS, Ferguson BS, Plaxco KW, Soh HT (2012) Rapid, sensitive, and quantitative detection of pathogenic DNA at the point of care through microfluidic electrochemical quantitative loop-mediated isothermal amplification. Angew Chem Int Ed Engl 124(20):4980–4984CrossRefGoogle Scholar
  25. 25.
    Yin P, Choi HM, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451(7176):318–322CrossRefGoogle Scholar
  26. 26.
    Li B, Jiang Y, Chen X, Ellington AD (2012) Probing spatial organization of DNA strands using enzyme-free hairpin assembly circuits. J Am Chem Soc 134(34):13918–13921CrossRefGoogle Scholar
  27. 27.
    Jiang Y, Li B, Milligan JN, Bhadra S, Ellington AD (2013) Real-time detection of isothermal amplification reactions with thermostable catalytic hairpin assembly. J Am Chem Soc 135(20):7430–7433CrossRefGoogle Scholar
  28. 28.
    Zhang J, Song S, Wang L, Pan D, Fan C (2007) A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat Protoc 2(11):2888–2895CrossRefGoogle Scholar
  29. 29.
    Wu LR, Wang JS, Fang JZ, Evans ER, Pinto A, Pekker I, Boykin R, Ngouenet C, Webster PJ, Beechem J (2015) Continuously tunable nucleic acid hybridization probes. Nat Methods 12(12):1191–1196CrossRefGoogle Scholar
  30. 30.
    Cheglakov Z, Cronin TM, He C, Weizmann Y (2015) Live cell MicroRNA imaging using Cascade hybridization reaction. J Am Chem Soc 137(19):6116–6119CrossRefGoogle Scholar
  31. 31.
    Zhang Z, Long Li J, Yao J, Wang T, Yin D, Chen Z, Xie G (2016) Energy driven cascade recognition for selective detection of nucleic acids with high discrimination factor at room temperature. Biosens Bioelectron 79:488–494CrossRefGoogle Scholar
  32. 32.
    Wang T, Zhou L, Bai S, Zhang Z, Li J, Jing X, Xie G (2016) Ultraspecific electrochemical DNA biosensor by coupling spontaneous cascade DNA branch migration and dual-signaling sensing strategy. Biosens Bioelectron 78:464–470CrossRefGoogle Scholar
  33. 33.
    Dong M, Qi H, Ding S, Li M (2015) Electrochemical determination of trypsin using a heptapeptide substrate self-assembled on a gold electrode. Microchim Acta 182(1–2):43–49CrossRefGoogle Scholar
  34. 34.
    Zhang Y, Wang Y, Wang H, Jiang J-H, Shen G-L, Yu R-Q, Li J (2009) Electrochemical DNA biosensor based on the proximity-dependent surface hybridization assay. Anal Chem 81(5):1982–1987CrossRefGoogle Scholar
  35. 35.
    He YB, Luo HQ, Li NB (2007) Thermodynamic and kinetic analysis of the interaction between hepatitis B surface antibody and antigen on a gold electrode modified with cysteamine and colloidal gold via electrochemistry. Biosens Bioelectron 22(12):2952–2957CrossRefGoogle Scholar
  36. 36.
    Huang R, Liao Y, Zhou X, Xing D (2015) Toehold-mediated nonenzymatic amplification circuit on graphene oxide fluorescence switching platform for sensitive and homogeneous microRNA detection. Anal Chim Acta 888:162–172CrossRefGoogle Scholar
  37. 37.
    Ma C, Wang W, Li Z, Cao L, Wang Q (2012) Simple colorimetric DNA detection based on hairpin assembly reaction and target-catalytic circuits for signal amplification. Anal Biochem 429(2):99–102CrossRefGoogle Scholar
  38. 38.
    Huang J, Su X, Li Z (2012) Enzyme-free and amplified fluorescence DNA detection using bimolecular beacons. Anal Chem 84(14):5939–5943CrossRefGoogle Scholar
  39. 39.
    Park J, Yeo JS (2014) Colorimetric detection of microRNA miR-21 based on nanoplasmonic core-satellite assembly. Chem Commun 50(11):1366–1368CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Lili Zhou
    • 1
  • Jian Wang
    • 1
  • Zhongping Chen
    • 2
  • Junlong Li
    • 1
  • Ting Wang
    • 1
  • Zhang Zhang
    • 1
  • Guoming Xie
    • 1
  1. 1.Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory MedicineChongqing Medical UniversityChongqingPeople’s Republic of China
  2. 2.Department of Clinical LaboratoryChongqing Municipal Jiulongpo District the First People’s HospitalChongqingPeople’s Republic of China

Personalised recommendations