Advertisement

Microchimica Acta

, Volume 184, Issue 5, pp 1517–1527 | Cite as

Thymine chitosan nanomagnets for specific preconcentration of mercury(II) prior to analysis using SELDI-MS

  • Hani Nasser Abdelhamid
  • Yu Chih Lin
  • Hui-Fen Wu
Original Paper

Abstract

Laser desorption-ionization mass spectrometry (LDI-MS) is used to determine Hg(II) ions by using thymine-modified chitosan-coated magnetic nanoparticles (TCTS). TCTS nanoparticles are characterized using transmission electron microscopy, X-ray diffraction, UV-vis absorption, infrared spectroscopy and LDI-MS. TCTS acts as a preconcentration probe, supports surface enhanced LDI-MS (SELDI-MS) and acts as a capping agent for Hg(II). The separation of Hg(II) via this method combined with SELDI-MS provides a sensitive and selective tool for inexpensive and fast (5 min) detection of Hg(II) with limit of detection down to 0.05 nmol for environmental samples such as tap and sea water.

Graphical abstract

Schematic of laserr desorption/ionization mass spectrometry (LDI-MS) using thymine - modified chitosan magnetic nanoparticles for the specific analysis of Hg(II) ions in tap and sea water. TCTS acts as preconcentration probe, supports surface enhanced LDI-MS, and binds Hg(II) ions.

Keywords

Mercury Laser desorption ionization mass spectrometry Magnetic nanoparticles Thymine Chitosan 

Notes

Acknowledgements

We acknowledge the financial support from the Ministry of science and technology Taiwan. H.N. Abdelhamid expresses his gratitude to Assuit University and Ministry of Higher Education (Egypt) for support.

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2017_2125_MOESM1_ESM.docx (778 kb)
ESM 1 (DOCX 778 kb)

References

  1. 1.
    Guallar E, Sanz-Gallardo MI, van’t Veer P, Bode P, Aro A, Gómez-Aracena J, Kark JD, Riemersma RA, Martín-Moreno JM, Kok FJ (2002) Mercury, fish oils, and the risk of myocardial infarction. N Engl J Med 347:1747–1754. doi: 10.1056/NEJMoa020157 CrossRefGoogle Scholar
  2. 2.
    Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301:1203. doi: 10.1126/science.1085941 CrossRefGoogle Scholar
  3. 3.
    Pacyna EG, Pacyna JM, Sundseth K, Munthe J, Kindbom K, Wilson S, Steenhuisen F, Maxson P (2010) Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos Environ 44:2487–2499. doi: 10.1016/j.atmosenv.2009.06.009 CrossRefGoogle Scholar
  4. 4.
    Lamborg CH, Hammerschmidt CR, Bowman KL, Swarr GJ, Munson KM, Ohnemus DC, Lam PJ, Heimbürger LE, Rijkenberg MJA, Saito MA (2014) A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 512:65–68. doi: 10.1038/nature13563 CrossRefGoogle Scholar
  5. 5.
    UNEP (United Nations Environment Programme) (2013) Mercury_Time To Act http://www.unep.org/PDF/PressReleases/Mercury_TimeToAct.pdf. Accessed 6 Mar 2016
  6. 6.
    Legrand M, Passos CJS, Mergler D, Chan HM (2005) Biomonitoring of mercury exposure with single human hair strand. Environ Sci Technol 39:4594–4598. doi: 10.1021/es047996o CrossRefGoogle Scholar
  7. 7.
    Ammann AA (2007) Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool. J Mass Spectrom 42:419–427. doi: 10.1002/jms.1206 CrossRefGoogle Scholar
  8. 8.
    de Quadros DPC, Campanella B, Onor M, Bramanti E, Borges DLG, D’Ulivo A (2014) Mercury speciation by high-performance liquid chromatography atomic fluorescence spectrometry using an integrated microwave/UV interface. Optimization of a single step procedure for the simultaneous photo-oxidation of mercury species and photo-generation. Spectrochim Acta Part B At Spectrosc 101:312–319. doi: 10.1016/j.sab.2014.09.019 CrossRefGoogle Scholar
  9. 9.
    Noor AM, Rameshkumar P, Huang NM, Wei LS (2016) Visual and spectrophotometric determination of mercury(II) using silver nanoparticles modified with graphene oxide. Microchim Acta 183:597–603. doi: 10.1007/s00604-015-1680-8 CrossRefGoogle Scholar
  10. 10.
    Tang J, Huang Y, Zhang C, Liu H, Tang D (2016) DNA-based electrochemical determination of mercury(II) by exploiting the catalytic formation of gold amalgam and of silver nanoparticles. Microchim Acta 183:1805–1812. doi: 10.1007/s00604-016-1813-8 CrossRefGoogle Scholar
  11. 11.
    Zhang J, Tang Y, Lv J, Fang S, Tang D (2015) Glucometer-based quantitative determination of Hg(II) using gold particle encapsulated invertase and strong thymine-Hg(II)-thymine interaction for signal amplification. Microchim Acta 182:1153–1159. doi: 10.1007/s00604-014-1437-9 CrossRefGoogle Scholar
  12. 12.
    Kumari N, Dey N, Bhattacharya S (2014) Rhodamine based dual probes for selective detection of mercury and fluoride ions in water using two mutually independent sensing pathways. Analyst 139:2370–2378. doi: 10.1039/c3an02020g CrossRefGoogle Scholar
  13. 13.
    Abdelhamid HN, Wu H-F (2015) Reduced graphene oxide conjugate thymine as a new probe for ultrasensitive and selective fluorometric determination of mercury(II) ions. Microchim Acta 182:1609–1617. doi: 10.1007/s00604-015-1461-4 CrossRefGoogle Scholar
  14. 14.
    Cui X, Zhu L, Wu J, Hou Y, Wang P, Wang Z, Yang M (2015) A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. Biosens Bioelectron 63:506–512. doi: 10.1016/j.bios.2014.07.085 CrossRefGoogle Scholar
  15. 15.
    Wei Q, Nagi R, Sadeghi K, Feng S, Yan E, Ki SJ, Caire R, Tseng D, Ozcan A (2014) Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano 8:1121–1129. doi: 10.1021/nn406571t CrossRefGoogle Scholar
  16. 16.
    Liu X, Wu Z, Zhang Q, Zhao W, Zong C, Gai H (2016) Single gold nanoparticle-based colorimetric detection of Picomolar mercury ion with dark-field microscopy. Anal Chem 88:2119–2124. doi: 10.1021/acs.analchem.5b03653 CrossRefGoogle Scholar
  17. 17.
    Liu M, Wang Z, Zong S, Chen H, Zhu D, Wu L, Hu G, Cui Y (2014) SERS detection and removal of mercury(II)/silver(I) using oligonucleotide-functionalized core/shell magnetic silica sphere@Au nanoparticles. ACS Appl Mater Interfaces 6:7371–7379. doi: 10.1021/am5006282 CrossRefGoogle Scholar
  18. 18.
    Guerrini L, Rodriguez-Loureiro I, Correa-Duarte MA, Lee YH, Ling XY, García de Abajo FJ, Alvarez-Puebla RA (2014) Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water. Nanoscale 6:8368–8375. doi: 10.1039/c4nr01464b CrossRefGoogle Scholar
  19. 19.
    Abdelhamid HN, Wu H-F (2014) Ultrasensitive, rapid, and selective detection of mercury using graphene assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom 25:861–868. doi: 10.1007/s13361-014-0825-z CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Xie J, Liu Y, Pang P, Feng L, Wang H, Wu Z, Yang W (2015) Simple and signal-off electrochemical biosensor for mercury(II) based on thymine-mercury-thymine hybridization directly on graphene. Electrochim Acta 170:210–217. doi: 10.1016/j.electacta.2015.04.152 CrossRefGoogle Scholar
  21. 21.
    Lu M, Xiao R, Zhang X, Niu J, Zhang X, Wang Y (2016) Novel electrochemical sensing platform for quantitative monitoring of Hg(II) on DNA-assembled graphene oxide with target recycling. Biosens Bioelectron 85:267–271. doi: 10.1016/j.bios.2016.05.027 CrossRefGoogle Scholar
  22. 22.
    Huber J, Leopold K (2016) Nanomaterial-based strategies for enhanced mercury trace analysis in environmental and drinking waters. TrAC Trends Anal Chem 80:280–292. doi: 10.1016/j.trac.2015.09.007 CrossRefGoogle Scholar
  23. 23.
    Cui L, Guo X, Wei Q, Wang Y, Gao L, Yan L, Yan T, Du B (2015) Removal of mercury and methylene blue from aqueous solution by xanthate functionalized magnetic graphene oxide: sorption kinetic and uptake mechanism. J Colloid Interface Sci 439:112–120. doi: 10.1016/j.jcis.2014.10.019 CrossRefGoogle Scholar
  24. 24.
    Jung JH, Lee JH, Shinkai S (2011) Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields. Chem Soc Rev 40:4464–4474. doi: 10.1039/c1cs15051k CrossRefGoogle Scholar
  25. 25.
    Reddy DHK, Lee S-M (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interf Sci 201–202:68–93. doi: 10.1016/j.cis.2013.10.002 CrossRefGoogle Scholar
  26. 26.
    Abdelhamid HN, Wu H-F (2013) Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria. J Mater Chem B 1:3950–3961. doi: 10.1039/c3tb20413h CrossRefGoogle Scholar
  27. 27.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339. doi: 10.1021/ja01539a017 CrossRefGoogle Scholar
  28. 28.
    Abdelhamid HN, Wu H-F (2012) A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors. Anal Chim Acta 751:94–104. doi: 10.1016/j.aca.2012.09.012 CrossRefGoogle Scholar
  29. 29.
    Abdelhamid HN, Khan MS, Wu H-F (2014) Graphene oxide as a nanocarrier for gramicidin (GOGD) for high antibacterial performance. RSC Adv 4:50035–50046. doi: 10.1039/C4RA07250B CrossRefGoogle Scholar
  30. 30.
    Abdelhamid HN, Wu B-S, Wu H-F (2014) Graphene coated silica applied for high ionization matrix assisted laser desorption/ionization mass spectrometry: a novel approach for environmental and biomolecule analysis. Talanta 126:27–37CrossRefGoogle Scholar
  31. 31.
    Abdelhamid HN, Wu H-F (2015) Synthesis and characterization of quantum dots for application in laser soft desorption/ionization mass spectrometry to detect labile metal–drug interactions and their antibacterial activity. RSC Adv 5:76107–76115. doi: 10.1039/C5RA11301F CrossRefGoogle Scholar
  32. 32.
    Abdelhamid HN, Kumaran S, Wu H-F (2016) One-pot synthesis of CuFeO 2 nanoparticles capped with glycerol and proteomic analysis of their nanocytotoxicity against fungi. RSC Adv 6:97629–97635. doi: 10.1039/C6RA13396G CrossRefGoogle Scholar
  33. 33.
    Gopal J, Abdelhamid HN, Hua P-Y, Wu H-F (2013) Chitosan nanomagnets for effective extraction and sensitive mass spectrometric detection of pathogenic bacterial endotoxin from human urine. J Mater Chem B 1:2463–2475. doi: 10.1039/c3tb20079e CrossRefGoogle Scholar
  34. 34.
    Chen Z-Y, Abdelhamid HN, Wu H-F (2016) Effect of surface capping of quantum dots (CdTe) on proteomics. Rapid Commun Mass Spectrom 30:1403–1412. doi: 10.1002/rcm.7575 CrossRefGoogle Scholar
  35. 35.
    Nasser Abdelhamid H, Wu HF (2013) Furoic and mefenamic acids as new matrices for matrix assisted laser desorption/ionization-(MALDI)-mass spectrometry. Talanta 115:442–450. doi: 10.1016/j.talanta.2013.05.050 CrossRefGoogle Scholar
  36. 36.
    Abdelhamid HN, Bhaisare ML, Wu H-F (2014) Ceria nanocubic-ultrasonication assisted dispersive liquid-liquid microextraction coupled with matrix assisted laser desorption/ionization mass spectrometry for pathogenic bacteria analysis. Talanta 120:208–217. doi: 10.1016/j.talanta.2013.11.078 CrossRefGoogle Scholar
  37. 37.
    Li G, Jiang Y, Huang K et al (2008) Preparation and properties of magnetic Fe3O4–chitosan nanoparticles. J Alloys Compd 466:451–456. doi: 10.1016/j.jallcom.2007.11.100 CrossRefGoogle Scholar
  38. 38.
    Kuo C-H, Liu Y-C, Chang C-MJ, Chen JH, Chang C, Shieh CJ (2012) Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydr Polym 87:2538–2545. doi: 10.1016/j.carbpol.2011.11.026 CrossRefGoogle Scholar
  39. 39.
    Kyzas GZ, Deliyanni EA (2013) Mercury(II) removal with modified magnetic chitosan adsorbents. Molecules 18:6193–6214. doi: 10.3390/molecules18066193 CrossRefGoogle Scholar
  40. 40.
    Ravel B, Slimmer SC, Meng X, Wong GCL, Lu Y (2009) EXAFS studies of catalytic DNA sensors for mercury contamination of water. Radiat Phys Chem 78:S75–S79. doi: 10.1016/j.radphyschem.2009.05.024 CrossRefGoogle Scholar
  41. 41.
    Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, Tanaka Y, Kondo Y, Sawa R, Fujimoto T, Machinami T, Ono A (2006) MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. J Am Chem Soc 128:2172–2173. doi: 10.1021/ja056354d CrossRefGoogle Scholar
  42. 42.
    Blum JD, Sherman LS, Johnson MW (2014) Mercury isotopes in earth and environmental sciences. Annu Rev Earth Planet Sci 42:249–269. doi: 10.1146/annurev-earth-050212-124107 CrossRefGoogle Scholar
  43. 43.
    Kyzas GZ, Travlou NA, Deliyanni EA (2014) The role of chitosan as nanofiller of graphite oxide for the removal of toxic mercury ions. Colloids Surf B: Biointerfaces 113:467–476. doi: 10.1016/j.colsurfb.2013.07.055 CrossRefGoogle Scholar
  44. 44.
    Zhu M, Wang Y, Deng Y, Yao L, Adeloju SB, Pan D, Xue F, Wu Y, Zheng L, Chen W (2014) Ultrasensitive detection of mercury with a novel one-step signal amplified lateral flow strip based on gold nanoparticle-labeled ssDNA recognition and enhancement probes. Biosens Bioelectron 61:14–20. doi: 10.1016/j.bios.2014.04.049 CrossRefGoogle Scholar
  45. 45.
    Abdelhamid HN, Wu H-F (2014) Facile synthesis of nano silver ferrite (AgFeO2) modified with chitosan applied for biothiol separation. Mater Sci Eng C Mater Biol Appl 45:438–445. doi: 10.1016/j.msec.2014.08.071 CrossRefGoogle Scholar
  46. 46.
    Abdelhamid HN, Talib A, Wu H-F (2015) Facile synthesis of water soluble silver ferrite (AgFeO2) nanoparticles and their biological application as antibacterial agents. RSC Adv 5:34594–34602CrossRefGoogle Scholar
  47. 47.
    Abdelhamid HN, Wu H-F (2014) Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. TrAC Trends Anal Chem 65:30–46CrossRefGoogle Scholar
  48. 48.
    Abdelhamid HN, Wu H-F (2013) Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application. J Mater Chem B 1:6094–6106. doi: 10.1039/c3tb21020k CrossRefGoogle Scholar
  49. 49.
    Wang ZZ, Deguchi Y, Yan JJ, Liu JP (2014) Rapid detection of mercury and iodine using laser breakdown time-of-flight mass spectrometry. Spectrosc Lett 48:128–138. doi: 10.1080/00387010.2013.859158 CrossRefGoogle Scholar
  50. 50.
    Liu J, Lu Y (2007) Rational design of “turn-on” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew Chem 119:7731–7734. doi: 10.1002/ange.200702006 CrossRefGoogle Scholar
  51. 51.
    Wang H, Chen B, Zhu S, Yu X, He M, Hu B (2016) Chip-based magnetic solid-phase microextraction online coupled with MicroHPLC-ICPMS for the determination of mercury species in cells. Anal Chem 88:796–802. doi: 10.1021/acs.analchem.5b03130 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Hani Nasser Abdelhamid
    • 1
    • 2
  • Yu Chih Lin
    • 1
  • Hui-Fen Wu
    • 1
    • 3
    • 4
    • 5
  1. 1.Department of Chemistry and Center for Nanoscience and NanotechnologyNational Sun Yat-Sen UniversityKaohsiungTaiwan
  2. 2.School of Pharmacy, College of PharmacyKaohsiung Medical UniversityKaohsiungTaiwan
  3. 3.Institute of Medical Science and TechnologyNational Sun Yat-Sen UniversityKaohsiungTaiwan
  4. 4.National Sun Yat-Sen University and Academia SinicaKaohsiungTaiwan
  5. 5.Department of ChemistryAssuit UniversityAssiutEgypt

Personalised recommendations