Microchimica Acta

, Volume 184, Issue 5, pp 1285–1294 | Cite as

Highly sensitive and selective voltammetric determination of dopamine using a gold electrode modified with a molecularly imprinted polymeric film immobilized on flaked hollow nickel nanospheres

  • Yuan Liu
  • Jie Liu
  • Jiang Liu
  • Wei Gan
  • Bang-ce Ye
  • Yingchun Li
Original Paper

Abstract

The authors describe the preparation of a molecularly imprinted polymer (MIP) film on the surface of electrodeposited hollow nickel nanospheres (hNiNS), and the use of this nanocomposite in an electrochemical sensor for dopamine (DA). The use of the 3-dimensional hNiNS as a support material enlarges the sensing area and conductivity, while the MIP film warrants improved selectivity for DA. Quantification based on the “MIP/gate effect” was performed by employing hexacyanoferrate as the electrochemical probe. Scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy were applied to characterize the sensor materials. The electropolymerization condition such as pH value, functional monomer and ratio of template to monomer were optimized. By using dopamine (DA) as a model analyte, the sensor, if operated at 0.1 V vs. SCE, has fairly low detection limit of 1.7 × 10−14 M (at an S/N ratio of 3), two wide assay ranges of 5 × 10−14 to 1 × 10−12 M and 1 × 10−12 to 5 × 10−11 M, and superb selectivity.

Graphical Abstract

An electrochemical sensor platform with a novel composite film composed of hollow nickel nanospheres (hNiNS) and molecularly imprinted polymer (MIP) was developed via a facile double-elecrodeposition method. The synergistic effects of hNiNS and MIP guarantee the ultrahigh sensitivity (down to 10−2 ppt) and selectivity of the sensor.

Keywords

Electrochemical sensor Cyclic voltammetry Electrochemical impedance spectroscopy MIP Electropolymerization Blood analysis Trace assay Nanocomposite Gate effect Hexacyanoferrate 

Notes

Acknowledgements

The project financially supported by National Natural Science Foundation of China (81460543, 21575089) and 2015 Key Technical Innovation Project of Xinjiang Uygur Autonomous Region.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2017_2124_MOESM1_ESM.doc (1.8 mb)
ESM 1 (DOC 1.75 mb)

References

  1. 1.
    Perreault ML, Hasbi A, O’Dowd BF, George SR (2014) Heteromeric dopamine receptor signaling complexes: emerging neurobiology and disease relevance. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 39(1):156–168. doi: 10.1038/npp.2013.148 CrossRefGoogle Scholar
  2. 2.
    Antonelli F, Strafella AP (2014) Behavioral disorders in Parkinson’s disease: the role of dopamine. Parkinsonism Relat Disord 20:S10–S12. doi: 10.1016/s1353-8020(13)70005-1 CrossRefGoogle Scholar
  3. 3.
    Lin L, Qiu P, Yang L, Cao X, Jin L (2006) Determination of dopamine in rat striatum by microdialysis and high-performance liquid chromatography with electrochemical detection on a functionalized multi-wall carbon nanotube electrode. Anal Bioanal Chem 384(6):1308–1313. doi: 10.1007/s00216-005-0275-3 CrossRefGoogle Scholar
  4. 4.
    Zhou Y, Yan H, Xie Q, Huang S, Liu J, Li Z, Ma M, Yao S (2013) Simultaneous analysis of dopamine and homovanillic acid by high-performance liquid chromatography with wall-jet/thin-layer electrochemical detection. Analyst 138(23):7246–7253. doi: 10.1039/c3an01437a CrossRefGoogle Scholar
  5. 5.
    Vuorensola K, Sirén H, Karjalainen U (2003) Determination of dopamine and methoxycatecholamines in patient urine by liquid chromatography with electrochemical detection and by capillary electrophoresis coupled with spectrophotometry and mass spectrometry. J Chromatogr B 788(2):277–289. doi: 10.1016/s1570-0232(02)01037-1 CrossRefGoogle Scholar
  6. 6.
    Huaiyou W (2002) Study on fluorescence property of dopamine anddetermination of dopamine by fluorimetry. Talanta 57:899–907CrossRefGoogle Scholar
  7. 7.
    Ganguly M, Mondal C, Jana J, Pal A, Pal T (2014) Selective dopamine chemosensing using silver-enhanced fluorescence. Langmuir 30(14):4120–4128. doi: 10.1021/la404982t CrossRefGoogle Scholar
  8. 8.
    Zhao Y, Zhao S, Huang J, Ye F (2011) Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis. Talanta 85(5):2650–2654. doi: 10.1016/j.talanta.2011.08.032 CrossRefGoogle Scholar
  9. 9.
    Feng X, Zhang Y, Zhou J, Li Y, Chen S, Zhang L, Ma Y, Wang L, Yan X (2015) Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale 7(6):2427–2432. doi: 10.1039/c4nr06623e CrossRefGoogle Scholar
  10. 10.
    Hu S, Huang Q, Lin Y, Wei C, Zhang H, Zhang W, Guo Z, Bao X, Shi J, Hao A (2014) Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine. Electrochim Acta 130:805–809. doi: 10.1016/j.electacta.2014.02.150 CrossRefGoogle Scholar
  11. 11.
    Kan X, Zhou H, Li C, Zhu A, Xing Z, Zhao Z (2012) Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/polypyrrole film. Electrochim Acta 63:69–75. doi: 10.1016/j.electacta.2011.12.086 CrossRefGoogle Scholar
  12. 12.
    Liu X, Zhang XY, Wang LL, Wang YY (2014) A sensitive electrochemical sensor for paracetamol based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles. Microchim Acta 181(11–12):1439–1446. doi: 10.1007/s00604-014-1289-3 CrossRefGoogle Scholar
  13. 13.
    Song W, Chen Y, Xu J, Yang XR, Tian DB (2010) Dopamine sensor based on molecularly imprinted electrosynthesized polymers. J Solid State Electrochem 14(10):1909–1914. doi: 10.1007/s10008-010-1025-9 CrossRefGoogle Scholar
  14. 14.
    Yang L, Li X, Xiong Y, Liu X, Li X, Wang M, Yan S, Alshahrani LAM, Liu P, Zhang C (2014) The fabrication of a Co (II) complex and multi-walled carbon nanotubes modified glass carbon electrode, and its application for the determination of dopamine. J Electroanal Chem 731:14–19. doi: 10.1016/j.jelechem.2014.07.036 CrossRefGoogle Scholar
  15. 15.
    Zhang W, Zheng J, Shi J, Lin Z, Huang Q, Zhang H, Wei C, Chen J, Hu S, Hao A (2015) Nafion covered core-shell structured Fe3O4@graphene nanospheres modified electrode for highly selective detection of dopamine. Anal Chim Acta 853:285–290. doi: 10.1016/j.aca.2014.10.032 CrossRefGoogle Scholar
  16. 16.
    Xu G, Wang W, Li B, Luo Z, Luo X (2014) A dopamine sensor based on a carbon paste electrode modified with DNA-doped poly(3,4-ethylenedioxythiophene). Microchim Acta 182(3–4):679–685. doi: 10.1007/s00604-014-1373-8 Google Scholar
  17. 17.
    Zhiqiang GAI (1993) Electrochemical behaviour of dopamine and ascorbic acid at overoxidized polypyrrole(dodecy1 sulphate) film-coated electrodes. Anal Chim Acta 284:393–404CrossRefGoogle Scholar
  18. 18.
    Lticio Angnes CMNA, Araki K, Toma HE (1996) Electrochemical detection of NADH and dopamine in flow analysis based on tetraruthenated porphyrin modified electrodes. Anal Chim Acta 329:91–96CrossRefGoogle Scholar
  19. 19.
    Jacobs CB, Peairs MJ, Venton BJ (2010) Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662(2):105–127. doi: 10.1016/j.aca.2010.01.009 CrossRefGoogle Scholar
  20. 20.
    Zhang W, Chai Y, Yuan R, Chen S, Han J, Yuan D (2012) Facile synthesis of graphene hybrid tube-like structure for simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan. Anal Chim Acta 756:7–12. doi: 10.1016/j.aca.2012.10.044 CrossRefGoogle Scholar
  21. 21.
    Jayne B, Zimmerman RMW (1991) Simultaneous Electrochemical Measurements of Oxygen and Dopamine in vivo. Anal Chem 63:24–28CrossRefGoogle Scholar
  22. 22.
    Lin LLY, Fu Q, He L, Zhang J, Zhang Q (2006) Preparation of molecularly imprinted polymer for sinomenine and study on its molecular recognition mechanism. Polymer 47(11):3792–3798. doi: 10.1016/j.polymer.2006.03.083 CrossRefGoogle Scholar
  23. 23.
    Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100(7):2495–2504. doi: 10.1021/cr990099w CrossRefGoogle Scholar
  24. 24.
    Li Y, Liu J, Yuan Q, Tang H, Yu F, Lv X (2016) A green adsorbent derived from banana peel for highly effective removal of heavy metal ions from water. RSC Adv 6(51):45041–45048. doi: 10.1039/c6ra07460j CrossRefGoogle Scholar
  25. 25.
    Haginaka J (2009) Molecularly imprinted polymers as affinity-based separation media for sample preparation. J Sep Sci 32(10):1548–1565. doi: 10.1002/jssc.200900085 CrossRefGoogle Scholar
  26. 26.
    Mayes AG, Mosbach K (1997) Molecularly imprinted polymers: useful materials foranalytical chemistry? Trends Anal Chem 16:321–332CrossRefGoogle Scholar
  27. 27.
    Tan F, Cong L, Li X, Zhao Q, Zhao H, Quan X, Chen J (2016) An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples. Sensors Actuators B 233:599–606. doi: 10.1016/j.snb.2016.04.146 CrossRefGoogle Scholar
  28. 28.
    Li Y, Liu Y, Liu J, Liu J, Tang H, Cao C, Zhao D, Ding Y (2015) Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors. Sci Rep 5:7699–7707. doi: 10.1038/srep07699 CrossRefGoogle Scholar
  29. 29.
    Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications, Vol 2. Wiley New YorkGoogle Scholar
  30. 30.
    Li Y, Zhang L, Liu J, Zhou S, Al-Ghanim KA, Mahboob S, Ye BC, Zhang X (2016) A novel sensitive and selective electrochemical sensor based on molecularly imprinted polymer on a nanoporous gold leaf modified electrode for warfarin sodium determination. RSC Adv 6:43724–43731. doi: 10.1039/C6RA05553B CrossRefGoogle Scholar
  31. 31.
    Huang J, Tian J, Zhao Y, Zhao S (2015) Ag/Au nanoparticles coated graphene electrochemical sensor for ultrasensitive analysis of carcinoembryonic antigen in clinical immunoassay. Sensors Actuators B 206:570–576CrossRefGoogle Scholar
  32. 32.
    Liu Y, Liu J, Tang H, Liu J, Xu B, Yu F, Li Y (2015) Fabrication of highly sensitive and selective electrochemical sensor by using optimized molecularly imprinted polymers on multi-walledcarbon nanotubes for metronidazole measurement. Sensors Actuators B 206:647–652. doi: 10.1016/j.snb.2014.10.019 CrossRefGoogle Scholar
  33. 33.
    Xu W, Liu P, Guo C, Dong C, Zhang X, Wang S (2013) Electrochemical sensor based on a carbon nanotube-modified imprinted sol–gel for selective and sensitive determination of ß2-agonists. Microchim Acta 180(11–12):1005–1011. doi: 10.1007/s00604-013-1020-9 CrossRefGoogle Scholar
  34. 34.
    Lin X, Ni Y, Kokot S (2016) Electrochemical cholesterol sensor based on cholesterol oxidase and MoS2-AuNPs modified glassy carbon electrode. Sensors Actuators B 233:100–106. doi: 10.1016/j.snb.2016.04.019 CrossRefGoogle Scholar
  35. 35.
    Shahrokhian S, Rastgar S (2012) Construction of an electrochemical sensor based on the electrodeposition of Au-Pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime. Analyst 137(137):2706–2715CrossRefGoogle Scholar
  36. 36.
    Lu W, Qin X, Asiri AM, Al-Youbi AO, Sun X (2013) Ni foam: a novel three-dimensional porous sensing platform for sensitive and selective nonenzymatic glucose detection. Analyst 138(2):417–420. doi: 10.1039/c2an36138h CrossRefGoogle Scholar
  37. 37.
    Li Y, Liu Y, Yang Y, Yu F, Liu J, Song H, Liu J, Tang H, Ye BC, Sun Z (2015) Novel electrochemical sensing platform based on a molecularly imprinted polymer decorated 3D nanoporous nickel skeleton for ultrasensitive and selective determination of metronidazole. ACS Appl Mater Interface 7(28):15474–15480. doi: 10.1021/acsami.5b03755 CrossRefGoogle Scholar
  38. 38.
    Shervedani RK, Karevan M, Amini A (2014) Prickly nickel nanowires grown on Cu substrate as a supersensitive enzyme-free electrochemical glucose sensor. Sensors Actuators B 204:783–790CrossRefGoogle Scholar
  39. 39.
    D’Addato S, Grillo V, Altieri S, Frabboni S, Valeri S (2012) Assembly and structure of Ni/NiO core–shell nanoparticles. Appl Surf Sci 260:13–16. doi: 10.1016/j.apsusc.2011.12.073 CrossRefGoogle Scholar
  40. 40.
    Choi WS, Chang W, Shin HC (2014) Hollow nanodendritic nickel oxide networks prepared by dealloying of nickel–copper alloy. J Solid State Electrochem 18(2):427–433CrossRefGoogle Scholar
  41. 41.
    Chang JK, Wu CM, Sun IW (2010) Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications. J Mater Chem 20(18):3729–3735. doi: 10.1039/b925176f CrossRefGoogle Scholar
  42. 42.
    Niu X, Lan M, Zhao H, Chen C (2013) Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal Chem 85(7):3561–3569CrossRefGoogle Scholar
  43. 43.
    Li Y, Song H, Zhang L, Zuo P, Ye BC, Yao J, Chen W (2016) Supportless electrochemical sensor based on molecularly imprinted polymer modified nanoporous microrod for determination of dopamine at trace level. Biosensor Bioelectron 78:308–314. doi: 10.1016/j.bios.2015.11.063 CrossRefGoogle Scholar
  44. 44.
    Liu J, Tang H, Zhang B, Deng X, Zhao F, Zuo P, Ye BC, Li Y (2016) Electrochemical sensor based on molecularly imprinted polymer for sensitive and selective determination of metronidazole via two different approaches. Anal Bioanal Chem 408(16):4287–4295. doi: 10.1007/s00216-016-9520-1 CrossRefGoogle Scholar
  45. 45.
    Li Y, Fu Q, Zhang Q, He L (2006) Preparation and evaluation of uniform-size (−)-ephedrineimprinted polymeric microspheres by multi-step swelling and suspension polymerization. Anal Sci 22:1355–1360CrossRefGoogle Scholar
  46. 46.
    Liu J, Zhang L, Li L, Song H, Liu Y, Tang H, Li Y (2015) Synthesis of metronidazole imprinted molecularly imprinted polymers by distillation precipitation polymerization and their use as a solid-phase adsorbent and chromatographic filler. J Sep Sci 38:1172–1178. doi: 10.1002/jssc.201401248 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Yuan Liu
    • 1
  • Jie Liu
    • 2
  • Jiang Liu
    • 1
  • Wei Gan
    • 1
  • Bang-ce Ye
    • 3
    • 4
  • Yingchun Li
    • 1
    • 2
    • 3
  1. 1.School of ScienceHarbin Institute of Technology (Shenzhen)ShenzhenChina
  2. 2.Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, School of PharmacyShihezi UniversityShiheziChina
  3. 3.Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical EngineeringShihezi UniversityShiheziChina
  4. 4.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations