Microchimica Acta

, Volume 184, Issue 5, pp 1369–1377 | Cite as

Molecularly imprinted polymers labeled with amino-functionalized carbon dots for fluorescent determination of 2,4-dinitrotoluene

  • Jingjing Dai
  • Xiaoqing Dong
  • Maria Fidalgo de Cortalezzi
Original Paper
  • 377 Downloads

Abstract

The authors have prepared amino-functionalized carbon dots (AC-dots) and applied them to fluorescently label a molecularly imprinted polymer (MIP) prepared by using 2,4-dinitrotoluene (DNT) as a template. Since DNT can retard vinyl polymerization, poly(methyl acrylate-co-acrylic acid) was used as a monomer. Non-imprinted polymers (NIPs) were also synthesized in order to compare data. As expected, MIPs exhibit higher adsorption than NIPs, with imprinting efficiencies ranging from 2 to 2.5. DNT is specifically captured by the cavities in the MIP and interact with AC-dots on the surface, resulting in quenching of the fluorescence of the AC-dots. Response to DNT reaches equilibrium within ~30 min. The method has a dynamic range that extends from 1 to 15 ppm, and allows for quantitation of DNT in aqueous solutions, with a detection limit of 0.28 ppm. Selectivity tests conducted in presence of DNT analogs demonstrated the selective recognition of DNT.

Graphical Abstract

Schematic of the preparation of molecularly imprinted polymers labeled with amino-functionalized carbon dots (AC-dots) for the quenchometric determination of 2,4-dinitrotoluene (DNT).

Keywords

Surface modification Quenching Fluorometry Stern-Volmer plot Poly(methyl acrylate-co-acrylic acid) Silica colloidal crystal Nitroaromatic compounds 

Notes

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2017_2123_MOESM1_ESM.docx (6.3 mb)
ESM 1 (DOCX 6478 kb)

References

  1. 1.
    Technical Fact Sheet - Dinitrotoluene (DNT) (2014) United States Environmental Protection AgencyGoogle Scholar
  2. 2.
    Xu J, Jing N (2012) Effects of 2,4-dinitrotoluene exposure on enzyme activity, energy reserves and condition factors in common carp (Cyprinus carpio). J Hazard Mater 203–204:299–307. doi: 10.1016/j.jhazmat.2011.12.025 CrossRefGoogle Scholar
  3. 3.
    Lent EM, Crouse LCB, Quinn MJ, Wallace SM (2012) Comparison of the repeated dose toxicity of isomers of dinitrotoluene. Int J Toxicol 31(2):143–157. doi: 10.1177/1091581811434645 CrossRefGoogle Scholar
  4. 4.
    Reddy KR, Khodadoust AP, Darko-Kagya K (2014) Transport and reactivity of lactate-modified nanoscale iron particles for remediation of DNT in subsurface soils. J Environ Eng 140(12):04014042. doi: 10.1061/(ASCE)EE.1943-7870.0000870 CrossRefGoogle Scholar
  5. 5.
    Tchounwou PB, Newsome C, Glass K, Centeno JA, Leszczynski J, Bryant J, Okoh J, Ishaque A, Brower M (2003) Environmental toxicology and health effects associated with dinitrotoluene exposure. Rev Environ Health 18(3):203–229. doi: 10.1515/REVEH.2003.18.3.203 CrossRefGoogle Scholar
  6. 6.
    Bosco FG, Bache M, Hwu ET, Chen CH, Andersen SS, Nielsen KA, Keller SS, Jeppesen JO, Hwang IS, Boisen A (2012) Statistical analysis of DNT detection using chemically functionalized microcantilever arrays. Sensors Actuators B Chem 171–172:1054–1059. doi: 10.1016/j.snb.2012.06.033 CrossRefGoogle Scholar
  7. 7.
    Wang E, Sun D, Li H, Sun X, Liu J, Ren Z, Yan S (2016) High efficiency organosilicon-containing polymer sensors for the detection of trinitrotoluene and dinitrotoluene. J Mater Chem C 4(28):6756–6760. doi: 10.1039/c6tc01892k CrossRefGoogle Scholar
  8. 8.
    Goodpaster JV, McGuffin VL (2001) Fluorescence quenching as an indirect detection method for nitrated explosives. Anal Chem 73(9):2004–2011. doi: 10.1021/ac001347n CrossRefGoogle Scholar
  9. 9.
    Peveler WJ, Roldan A, Hollingsworth N, Porter MJ, Parkin IP (2016) Multichannel detection and differentiation of explosives with a quantum dot array. ACS Nano 10(1):1139–1146. doi: 10.1021/acsnano.5b06433 CrossRefGoogle Scholar
  10. 10.
    Stringer RC, Gangopadhyay S, Grant SA (2010) Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer. Anal Chem 82(10):4015–4019. doi: 10.1021/ac902838c CrossRefGoogle Scholar
  11. 11.
    Zhang K, Zhou H, Mei Q, Wang S, Guan G, Liu R, Zhang J, Zhang Z (2011) Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J Am Chem Soc 133(22):8424–8427. doi: 10.1021/ja2015873 CrossRefGoogle Scholar
  12. 12.
    McCluskey A, Holdsworth CI, Bowyer MC (2007) Molecularly imprinted polymers (MIPs): sensing, an explosive new opportunity? Org Biomol Chem 5(20):3233–3244. doi: 10.1039/B708660A CrossRefGoogle Scholar
  13. 13.
    Wulff G (2002) Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev 102(1):1–28. doi: 10.1021/cr980039a CrossRefGoogle Scholar
  14. 14.
    Xu S, Lu H, Li J, Song X, Wang A, Chen L, Han S (2013) Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene. ACS Appl Mater Interfaces 5(16):8146–8154. doi: 10.1021/am4022076 CrossRefGoogle Scholar
  15. 15.
    Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744. doi: 10.1002/anie.200906623 CrossRefGoogle Scholar
  16. 16.
    Wang Y, Anilkumar P, Cao L, Liu J-H, Luo PG, Tackett KN, Sahu S, Wang P, Wang X, Sun Y-P (2011) Carbon dots of different composition and surface functionalization: cytotoxicity issues relevant to fluorescence cell imaging. Exp Biol Med 236(11):1231–1238CrossRefGoogle Scholar
  17. 17.
    Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2(34):6921. doi: 10.1039/c4tc00988f CrossRefGoogle Scholar
  18. 18.
    Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48(31):3686–3699. doi: 10.1039/C2CC00110A CrossRefGoogle Scholar
  19. 19.
    Wang X, Qu K, Xu B, Ren J, Qu X (2011) Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J Mater Chem 21(8):2445–2450. doi: 10.1039/C0JM02963G CrossRefGoogle Scholar
  20. 20.
    Li X, Rui M, Song J, Shen Z, Zeng H (2015) Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater 25(31):4929–4947. doi: 10.1002/adfm.201501250 CrossRefGoogle Scholar
  21. 21.
    Yang Y, Cui J, Zheng M, Hu C, Tan S, Xiao Y, Yang Q, Liu Y (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48(3):380–382. doi: 10.1039/c1cc15678k CrossRefGoogle Scholar
  22. 22.
    Dong Y, Wang R, Li H, Shao J, Chi Y, Lin X, Chen G (2012) Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 50(8):2810–2815. doi: 10.1016/j.carbon.2012.02.046 CrossRefGoogle Scholar
  23. 23.
    Ding C, Zhu A, Tian Y (2014) Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res 47(1):20–30. doi: 10.1021/ar400023s CrossRefGoogle Scholar
  24. 24.
    Hao T, Wei X, Nie Y, Xu Y, Yan Y, Zhou Z (2016) An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchim Acta 183(7):2197–2203. doi: 10.1007/s00604-016-1851-2 CrossRefGoogle Scholar
  25. 25.
    Wang H, Yi J, Velado D, Yu Y, Zhou S (2015) Immobilization of carbon dots in molecularly imprinted microgels for optical sensing of glucose at physiological pH. ACS Appl Mater Interface 7(29):15735–15745. doi: 10.1021/acsami.5b04744 CrossRefGoogle Scholar
  26. 26.
    Liu G, Chen Z, Jiang X, Feng D-Q, Zhao J, Fan D, Wang W (2016) In-situ hydrothermal synthesis of molecularly imprinted polymers coated carbon dots for fluorescent detection of bisphenol A. Sensors Actuators B Chem 228:302–307. doi: 10.1016/j.snb.2016.01.010 CrossRefGoogle Scholar
  27. 27.
    Zuo P, Gao J, Peng J, Liu J, Zhao M, Zhao J, Zuo P, He H (2015) A sol-gel based molecular imprint incorporating carbon dots for fluorometric determination of nicotinic acid. Microchim Acta 183(1):329–336. doi: 10.1007/s00604-015-1630-5 CrossRefGoogle Scholar
  28. 28.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69. doi: 10.1016/0021-9797(68)90272-5 CrossRefGoogle Scholar
  29. 29.
    Jiang P, Bertone J, Hwang K, Colvin V (1999) Single-crystal colloidal multilayers of controlled thickness. Chem Mater 11(8):2132–2140. doi: 10.1021/cm990080+ CrossRefGoogle Scholar
  30. 30.
    Zheng M, Liu S, Li J, Qu D, Zhao H, Guan X, Hu X, Xie Z, Jing X, Sun Z (2014) Integrating Oxaliplatin with Highly Luminescent Carbon Dots: An Unprecedented Theranostic Agent for Personalized Medicine. Adv Mater 26(21):3554–3560. doi: 10.1002/adma.201306192 CrossRefGoogle Scholar
  31. 31.
    Wang C, Xu Z, Zhang C (2015) Polyethyleneimine-functionalized fluorescent carbon dots: water stability, pH sensing, and cellular imaging. ChemNanoMat 1(2):122–127. doi: 10.1002/cnma.201500009 CrossRefGoogle Scholar
  32. 32.
    Mishra M, Yagci Y (2008) Handbook of vinyl polymers: radical polymerization, process, and technology. CRC pressGoogle Scholar
  33. 33.
    Katime I, Díaz de Apodaca E, Mendizábal E, Puig JE (2000) Acrylic acid/methyl methacrylate hydrogels. I. Effect of composition on mechanical and thermodynamic properties. J Macromol Sci A 37(4):307–321. doi: 10.1081/MA-100101095 CrossRefGoogle Scholar
  34. 34.
    Liu G, Ding X, Cao Y, Zheng Z, Peng Y (2004) Shape memory of hydrogen-bonded polymer network/poly(ethylene glycol) complexes. Macromolecules 37(6):2228–2232. doi: 10.1021/ma035717w CrossRefGoogle Scholar
  35. 35.
    Wahba MEK, El-Enany N, Belal F (2015) Application of the Stern–Volmer equation for studying the spectrofluorimetric quenching reaction of eosin with clindamycin hydrochloride in its pure form and pharmaceutical preparations. Anal Methods 7(24):10445–10451. doi: 10.1039/c3ay42093k CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Jingjing Dai
    • 1
  • Xiaoqing Dong
    • 2
  • Maria Fidalgo de Cortalezzi
    • 1
  1. 1.Department of Civil and Environmental EngineeringUniversity of MissouriColumbiaUSA
  2. 2.Department of Mechanical EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations