Microchimica Acta

, Volume 184, Issue 5, pp 1325–1333 | Cite as

Glucose oxidase immobilized on magnetic nanoparticles: Nanobiosensors for fluorescent glucose monitoring

  • Melisa del Barrio
  • María Moros
  • Sara Puertas
  • Jesús M. de la Fuente
  • Valeria Grazú
  • Vicente Cebolla
  • Susana de Marcos
  • Javier Galbán
Original Paper


The authors describe enzyme based nanobiosensors for continuous monitoring of glucose, with the long term goal of using them as smart diagnostic tattoos. The method is founded on two main features: (1) The fluorescence intensity and decay times of glucose oxidase (GOx) and of GOx labeled with fluorescein (FS) or a ruthenium chelate (Ru) reversibly change during interaction with glucose; (2) The (labeled) enzyme is linked to magnetite magnetic nanoparticles (MNPs) which permits the MNPs to be physically manipulated. It is found that a stable link between MNPs and GOx is only accomplished if the number of amino groups on the GOX is artificially enlarged (to form GOxsam). Fluorescence decay data are best acquired with 8-nm MNPs where scattering is marginal; The activity of GOx is found not to be affected by immobilization on the MNPs. The various immobilized enzymes (GOxsam, GOxsam-FS and GOxsam-Ru; all on MNPs) differ only slightly in terms of linear response to glucose which ranged from 0.5 mM to at least 3.5 mM. The RSDs are about 5% (for n = 5), the detection limits are at ∼50 μM, and the sensor lifetimes are >1 week.

Graphical abstract

Nanobiosensors consisting of Fe3O4 magnetic nanoparticles linked to glucose oxidase, previously enriched with amino groups (GOxsam) and containing fluorescein (FS) or a ruthenium derivative (Ru), are presented as a new kind of smart tattoos for glucose monitoring.


Biosensors Fluorescence Nanomaterials Lifetime Labelling Magnetite Ruthenium label Fluorescein label Enzyme activity Smart tattoo 



The authors thank the MINECO of Spain (CTQ2012-34774 and CTQ2012-35535), the ERC-starting Grant NANOPUZZLE and DGA-FEDER funding to Research Groups (E74, T08 and E93). M del Barrio thanks the CSIC for the funding for her PhD (JAE-Pre contract).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2017_2120_MOESM1_ESM.docx (3.6 mb)
ESM 1 (DOCX 3704 kb)


  1. 1.
    Kumar S, Ahlawat W, Kumar R, Dilbaghi N (2015) Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron 70:498–503CrossRefGoogle Scholar
  2. 2.
    Ruckh TT, Clark HA (2014) Implantable nanosensors: toward continuous physiologic monitoring. AnalChem 86:1314–1323Google Scholar
  3. 3.
    Vashist SK (2013) Continuous glucose monitoring systems: a review. Diagnostics 3:385–412CrossRefGoogle Scholar
  4. 4.
    Rebrin K, Steil GM, van Antwerp WP, Mastrototaro JJ (1999) Subcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring. AmJ Physiol 277:E561–E557Google Scholar
  5. 5.
    Steiner MS, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40:4805–4839CrossRefGoogle Scholar
  6. 6.
    McShane MJ (2006) Microcapsules as Smart tattoo glucose sensors: engineering systems with enzymes and glucose-binding sensing elements. In: Geddes CD, Lakowicz J (eds) Topics in fluorescence spectroscopy: volume 11: glucose sensing. Springer, USA Chapter 6Google Scholar
  7. 7.
    Srivastava R, Jayant RD, Chaudhary A, McShane MJ (2011) Smart tattoo glucose biosensors and effect of co-encapsulated anti-inflammatory agents. J Diabetes Sci Technol 5:76–85CrossRefGoogle Scholar
  8. 8.
    Heo YJ, Takeuchi S (2013) Towards smart tattoss: implantable biosensors for continuous glucose monitoring. Adv Healthcare Mater 2:43–56CrossRefGoogle Scholar
  9. 9.
    Fenzl C, Hirsch T, Wolfbeis OS (2014) Photonic crystals for chemical sensing and Biosensing. Angew Chem Int Ed 53:2–21CrossRefGoogle Scholar
  10. 10.
    Wei S, Jakusch M, Mizaikoff B (2006) Capturing molecules with templated materials—analysis and rational design of molecularly imprinted polymers. Anal Chim Acta 578:50–58CrossRefGoogle Scholar
  11. 11.
    Galbán J, Sanz-Vicente I, Ortega E, del Barrio M, de Marcos S (2012) Reagentless fluorescent biosensors based on proteins for continuous monitoring systems. Anal Bioanal Chem 402:3039–3054CrossRefGoogle Scholar
  12. 12.
    Pickup JC, Khan F, Zhi ZL, Coulter J, David DJS (2013) Fluorescence intensity- and lifetime-based glucose sensing using glucose/galactose-binding protein. J Diabetes SciTechnol 7:62–71Google Scholar
  13. 13.
    Joel S, Turner KB, Daunert S (2014) Glucose recognition proteins for glucose sensing at physiological concentrations and temperatures. ACS ChemBiol 9:1595–1602CrossRefGoogle Scholar
  14. 14.
    Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical application. Chem Rev 112:5818–5878CrossRefGoogle Scholar
  15. 15.
    Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRefGoogle Scholar
  16. 16.
    de Souza CM, Laube T, Yamanaka H, Alegret S, Pividori MI (2011) Magneto immunoassays for plasmodium falciparum histidine-rich protein 2 related to malaria based on magnetic nanoparticles. Anal Chem 83:5570–5577CrossRefGoogle Scholar
  17. 17.
    Xu Z, Hou Y, Sun S (2007) Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable Plasmonic properties. J Am Chem Soc 129:8698–8699CrossRefGoogle Scholar
  18. 18.
    Zeng S, Baillargeat D, Ho HP, Yong KT (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452CrossRefGoogle Scholar
  19. 19.
    Perlstein B, Lublin-Tennenbaum T, Marom I, Margel S (2010) Synthesis and characterization of functionalized magnetic maghemite nanoparticles with fluorescent probe capabilities for biological applications. J Biomed Mat Res B: Appl Biomat 92:353–360Google Scholar
  20. 20.
    Bing L (2014) Preparation and characterization of an optical sensor based on magnetic core and fluorescence "off-on" probe for Hg(II) sensing and removal. Sensors Actuators B 198:342–349CrossRefGoogle Scholar
  21. 21.
    Lapresta-Fernandez A, Doussineau T, Moro AJ, Dutz S, Steiniger F, Mohr GJ (2011) Magnetic core-shell fluorescent pH ratiometric nanosensor using a Stober coating method. Anal Chim Acta 707:164–170CrossRefGoogle Scholar
  22. 22.
    Qing C, Tanh H (2014) Optical determination of glucose and hydrogen peroxide using a nanocomposite prepared from glucose oxidase and magnetite nanoparticles immobilized on graphene oxide. Microchim Acta 181:527–534CrossRefGoogle Scholar
  23. 23.
    Moros M, Pelaz B, López-Larrubia P, Garcia-Martín ML, Grazu V, de la Fuente JM (2010) Engineering biofunctional magnetic nanoparticles for biotechnological applications. Nanoscale 2:1746–1755CrossRefGoogle Scholar
  24. 24.
    Witt S, Singh M, Kalisz HM (1998) Structural and kinetic properties of nonglycosylated recombinant Penicillium amagasakiense glucose oxidase expressed in Escherichia coli. Appl Environ Microbiol 64:1405–1411Google Scholar
  25. 25.
    Zhang JZ (2009) Optical properties and spectroscopy of nanomaterials. World Scientific, USA, Ch 6:181–203Google Scholar
  26. 26.
    Kulkarni SA, Sawadh PS, Palei PK, Kokate KK (2014) Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles. Ceram Int 40:1945–1949CrossRefGoogle Scholar
  27. 27.
    Ahmad S, Riaz U, Kaushik A, Alam J (2009) Soft template synthesis of superparamagnetic Fe3O4 nanoparticles a novel technique. J Inorg Organomet Polym Mater 19:355–360CrossRefGoogle Scholar
  28. 28.
    Tang J, Myers M, Bosnick KA, Brus LE (2003) Magnetite Fe3O4 nanocrystals: spectroscopic observation of aqueous oxidation kinetics. J Phys Chem B 107:7501–7506CrossRefGoogle Scholar
  29. 29.
    Ye QL, Yoshikawa H, Bandow S, Awaga K (2009) Green magnetite (Fe3O4): Unusual optical Mie scattering and magnetic isotropy of submicron-size hollow spheres. Appl Phys Lett 94:63114(1)–63114 (3)Google Scholar
  30. 30.
    Jain PK, Xiao Y, Walsworth R, Cohen AE (2009) Surface plasmon resonance enhanced magneto-optics (SuPREMO): faraday rotation enhancement in gold-coated iron oxide nanocrystals. Nano Lett 9:1644–1650CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Melisa del Barrio
    • 1
    • 2
  • María Moros
    • 3
  • Sara Puertas
    • 3
  • Jesús M. de la Fuente
    • 3
  • Valeria Grazú
    • 3
  • Vicente Cebolla
    • 1
  • Susana de Marcos
    • 2
    • 3
  • Javier Galbán
    • 2
    • 3
  1. 1.Instituto de CarboquímicaZaragozaSpain
  2. 2.Analytical Biosensors Group, Analytical Chemistry Department, Faculty of SciencesUniversity of ZaragozaZaragozaSpain
  3. 3.Instituto Universitario de Nanociencia de Aragón (INA), University of ZaragozaZaragozaSpain

Personalised recommendations