Microchimica Acta

, Volume 184, Issue 5, pp 1353–1360 | Cite as

Electrochemiluminescence immunoassay for the carcinoembryonic antigen using CdSe:Eu nanocrystals

  • Qiao Liu
  • Xing-Pei Liu
  • Yu-Pin Wei
  • Chang-Jie Mao
  • He-Lin Niu
  • Ji-Ming Song
  • Bao-Kang Jin
  • Sheng-Yi Zhang
Original Paper


CdSe:Eu nanocrystals were successfully synthesized and characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectric spectroscopy. The CdSe:Eu nanocrystals showed enhanced green electrochemiluminescence (ECL) intensity when compared to pure CdSe nanocrystals. Further, the nanocrystals were used to design an ECL immunosensor for the detection of carcinoembryonic antigen (CEA) that has a linear response over the 1.0 fg·mL−1 to 100 ng·mL−1 CEA concentration range with a 0.4 fg·mL−1 detection limit. The assay was applied to the determination of CEA in human serum samples.

Graphical abstract

Schematic of the assay: GCE-glassy-carbon electrode, Ab- Antibody, BSA- Bovine serum albumin, Ag- Antigen. CdSe:Eu nanocrystals were used to design an ECL immunosensor for the detection of carcinoembryonic antigen.


CdSe:Eu nanocrytals Electrochemiluminescence XPS Serum analysis Tumor diagnosis 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 21471001, 21427807, 21575001), Natural Science Foundation of Anhui Province (1508085 MB37), Key Project of Anhui Provincial Education Department (KJ2014A016), and 211 project of Anhui University.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2017_2114_MOESM1_ESM.docx (5.1 mb)
ESM 1 (DOCX 5183 kb)


  1. 1.
    Jiang W, Yuan R, Chai YQ, Su HL (2011) A novel electrochemical immunoassay based on diazotization-coupled functionalized bioconjugates as trace labels for ultrasensitive detection of carcinoembryonic antigen. Biosens Bioelectron 26:2786CrossRefGoogle Scholar
  2. 2.
    Huang KJ, Niu DJ, Xie WZ (2010) A disposable electrochemical immunosensor for carcinoembryonic antigen based on nano-Au/multi-walled carbon nanotubes-chitosans nanocomposite film modified glassy carbon electrode. Anal Chim Acta 659:102CrossRefGoogle Scholar
  3. 3.
    Iwazawa T, Kanoh T, Matsui S, Monden T (2000) Diagnosis of lung cancer metastasis with CEA extracted from the dissected regional lymph nodes. Lung Cancer Lung Cancer Manage 29:254Google Scholar
  4. 4.
    Naghibalhossaini F, Ebadi P (2006) Evidence for CEA release from human colon cancer cells by an endogenous GPI-PLD enzyme. Cancer Lett 234:158CrossRefGoogle Scholar
  5. 5.
    Falzarano R, Viggiani V, Michienzi S, Longo F, Tudini S, Frati L, Anastasi E (2013) Evaluation of a CLEIA automated assay system for the detection of a panel of tumor markers. Tumour Biol 34:3093CrossRefGoogle Scholar
  6. 6.
    Feng TT, Qiao XW, Wang HN, Sun Z, Hong CL (2016) A sandwich-type electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of optimized ferrocene functionalized Fe3O4@SiO2 as labels. Biosens Bioelectron 79:48CrossRefGoogle Scholar
  7. 7.
    Gao J, Guo ZK, Su FJ, Gao L, Pang XH, Cao W, Du B, Wei Q (2015) Ultrasensitive electrochemical immunoassay for CEA through host-guest interaction of β-cyclodextrin functionalized graphene and Cu@Ag core-shell nanoparticles with adamantine-modified antibody. Biosens Bioelectron 63:465CrossRefGoogle Scholar
  8. 8.
    Liu MM, Wu J, Yang KL, Zong C, Lei JP, Ju HX (2016) Proximity hybridization-regulated chemiluminescence resonance energy transfer for homogeneous immunoassay. Talanta 154:455CrossRefGoogle Scholar
  9. 9.
    Liu AR, Zhao F, Zhao YW, Guan LS, Liu SQ (2016) A portable chemiluminescence imaging immunoassay for simultaneous detection of different isoforms of prostate specific antigen in serum. Biosens Bioelectron 81:97CrossRefGoogle Scholar
  10. 10.
    Hu LZ, Xu GB (2010) Applications and trends in electrochemiluminescence. Chem Soc Rev 39:3275CrossRefGoogle Scholar
  11. 11.
    Miao WJ (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108:2506CrossRefGoogle Scholar
  12. 12.
    Deng W, Chu C, Ge S, Yu J, Yan M, Song X (2015) Electrochemiluminescence PSA assay using an ITO electrode modified with gold and palladium, and flower-like titanium dioxide microparticles as ECL labels. Microchim Acta 182:1009CrossRefGoogle Scholar
  13. 13.
    Wang L, Mei L, Liu X, Shi J, Li Y, Gu N, Cui R (2015) A nanocomposite prepared from helical carbon nanotubes, polyallylamine hydrochloride and CdSe quantum dots for electrochemiluminescent determination of dopamine. Microchim Acta 182:1661CrossRefGoogle Scholar
  14. 14.
    Zhang F, Mao L, Zhu M (2014) Ultrasensitive immunoassay for free prostate-specific antigen based on ferrocenecarboxylate enhanced cathodic electrochemiluminescence of peroxydisulfate. Microchim Acta 181:1285CrossRefGoogle Scholar
  15. 15.
    Ding ZF, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296:1293CrossRefGoogle Scholar
  16. 16.
    Wang J, Shan Y, Zhao WW, Xu JJ, Chen HY (2011) Gold nanoparticle enhanced electrochemiluminescence of CdS thin films for ultrasensitive thrombin detection. Anal Chem 83:4004CrossRefGoogle Scholar
  17. 17.
    Wang XF, Xu JJ, Chen HY (2008) A new electrochemiluminescence emission of Mn-doped ZnS nanocrystals in aqueous solution. J Phys Chem C 112:17581CrossRefGoogle Scholar
  18. 18.
    Shan Y, Xu JJ, Chen HY (2009) Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS:Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA. Chem Commun 8:905CrossRefGoogle Scholar
  19. 19.
    Cui M, Yu R, Wang X, Zhou H, Liu J, Zhang S (2016) Novel graphene/Au-CdS: Eu composite-based electrochemiluminescence immunosensor for cancer biomarker detection by coupling resonance energy transfer and enzyme catalytic reaction. J Electroanal Chem 781:410CrossRefGoogle Scholar
  20. 20.
    Liu J, Cui M, Zhou H, Zhang S (2016) Efficient double-quenching of electrochemiluminescence from CdS: Eu QDs by hemin-graphene-Au nanorods ternary composite for ultrasensitive immunoassay. Sci Rep 6:30577CrossRefGoogle Scholar
  21. 21.
    Jie GF, Liu P, Wang L, Zhang SS (2010) Electrochemiluminescence immunosensor based on nanocomposite film of CdS quantum dots-carbon nanotubes combined with gold nanoparticles-chitosan. Electrochem Commun 12:22CrossRefGoogle Scholar
  22. 22.
    Wang T, Zhang SY, Mao CJ, Song JM, Niu HL, Jin BK, Tian YP (2012) Enhanced electrochemiluminescence of CdSe quantum dots composited with graphene oxide and chitosan for sensitive sensor. Biosens Bioelectron 31:369CrossRefGoogle Scholar
  23. 23.
    Hu XW, Mao CJ, Song JM, Niu HL, Zhang SY, Huang HP (2013) Fabrication of GO/PANi/CdSe nanocomposites for sensitive electrochemiluminescence biosensor. Biosens Bioelectron 41:372CrossRefGoogle Scholar
  24. 24.
    Liang GX, Li LL, Liu HY, Zhang JR, Burda C, Zhu JJ (2010) Fabrication of near-infrared-emitting CdSeTe/ZnS core/shell quantum dots and their electrogenerated chemiluminescence. Chem Commun 46:2974CrossRefGoogle Scholar
  25. 25.
    Liu DQ, Wang L, Ma SH, Jiang ZH, Yang B, Han XJ, Liu SQ (2015) A novel electrochemiluminescent immunosensor based on CdS-coated ZnO nanorod arrays for HepG2 cell eetection. Nanoscale 7:3627CrossRefGoogle Scholar
  26. 26.
    Wang J, Zhang YY, Zhao WW, Xu JJ, Chen HY (2013) Enhanced anodic electrochemiluminescence from Co2+-doped CdSe nanocrystals for alkaline phosphatase assay. Electroanal 25:951CrossRefGoogle Scholar
  27. 27.
    Deng L, Shan Y, Xu JJ, Chen HY (2012) Electrochemiluminescence behaviors of Eu3+-doped CdS nanocrystals film in aqueous solution. Nanoscale 4:831CrossRefGoogle Scholar
  28. 28.
    Costa VC, Lochhead MJ, Bray KL (1996) Fluorescence line-narrowing study of Eu3+-doped sol−gel silica: effect of modifying cations on the clustering of Eu3+. Chem Mater 8:783CrossRefGoogle Scholar
  29. 29.
    Zhao X, Wang X, Chen B, Meng Q, Yan B, Di W (2007) Luminescent properties of Eu3+ doped a-Gd2(MoO4)3 phosphor for white light emitting diodes. Opt Mater 29:1680CrossRefGoogle Scholar
  30. 30.
    Dakhel A (2011) Optoelectronic properties of Eu- and H-codoped CdO flms. Curr Appl Phys 11:11CrossRefGoogle Scholar
  31. 31.
    Ghosh P, Patra A (2008) Tuning of crystal phase and luminescence properties of Eu3+ doped sodium yttrium fluoride nanocrystals. J Phys Chem C 112:19283CrossRefGoogle Scholar
  32. 32.
    Jie GF, Li LL, Chen C, Xuan J, Zhu JJ (2009) Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay. Biosens Bioelectron 24:3352CrossRefGoogle Scholar
  33. 33.
    Saravanan L, Pandurangan A, Jayavel R (2011) Synthesis of cobalt-doped cadmium sulphide nanocrystals and their optical and magnetic properties. J Nanopart Res 13:1621CrossRefGoogle Scholar
  34. 34.
    Norberg NS, Gamelin DR (2005) Influence of surface modification on the luminescence of colloidal ZnO nanocrystals. J Phys Chem B 109:20810CrossRefGoogle Scholar
  35. 35.
    Li YH, Hong GY (2007) Synthesis and luminescence properties of nanocrystalline Gd2O3:Eu3+ by combustion process. J Lumin 124:297CrossRefGoogle Scholar
  36. 36.
    Myung N, Bae Y, Bard AJ (2003) Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals. Nano Lett 3:1053CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Qiao Liu
    • 1
  • Xing-Pei Liu
    • 1
  • Yu-Pin Wei
    • 1
  • Chang-Jie Mao
    • 1
  • He-Lin Niu
    • 1
  • Ji-Ming Song
    • 1
  • Bao-Kang Jin
    • 1
  • Sheng-Yi Zhang
    • 1
  1. 1.School of Chemistry and Chemical EngineeringAnhui UniversityHefeiPeople’s Republic of China

Personalised recommendations