Skip to main content
Log in

Dually emissive P,N-co-doped carbon dots for fluorescent and photoacoustic tissue imaging in living mice

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Hydrothermal treatment of a mixture of ethylene diamine, phosphoric acid and citric acid under ambient pressure generates fluorescent carbon dots that are co-doped with phosphorus and nitrogen. These have features such as (a) both green fluorescence (peaking at 430 nm; 30% quantum yield) and red fluorescence (peaking at 500 nm, quantum yield 78%), (b) wavelength-dependent emission peaks, and (c) insensitivity to changes of pH values, dot concentration and ionic strength. The C-dots are useful for both fluorescent (FL) and photoacoustic (PA) imaging of living tissue. PA imaging warrants better spatial resolution and allows deeper tissues to be imaged compared to most optical imaging techniques. It is essential to assign a photoacoustic contrast agent as most of the diseases do not show a natural photoacoustic contrast in their early stage. The dually emitting C-dots are shown to be a useful contrast agent for PA and FL imaging of mice tumors. Intravenous administration of the C-dots resulted in strong signals in both PA and FL imaging.

Photographs of the excitation wavelength-dependent fluorescence of P,N-doped C-dots obtained from ethylenediamine, phosphoric acid and citric acid. Intravenous administration of the C-dots resulted in strong signals in both photoacoustic (PA) and fluorescent (FL) imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Krysmann MJ, Kelarakis A, Dallas P, Giannelis EP (2012) Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J Am Chem Soc 134:747–750

    Article  CAS  Google Scholar 

  2. Zhou J, Tang J, Deng S, Yan F, Li W, Qu M (2017) Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta 184:343. doi:10.1007/s00604-016-2043-9

  3. Parvin N, Mandal TK, Roy P (2013) Polyelectrolyte carbon quantum-dots: new player as a noninvasive imaging probe in drosophila. J Nanosci Nanotechnol 13(10):6499–6505

    Article  CAS  Google Scholar 

  4. Mandal TK, Parvin N (2011) Rapid detection of bacteria by carbon quantum dots. J Biomed Nanotechnol 7(6):846–848

    Article  CAS  Google Scholar 

  5. Zhou J, Lin P, Ma J, Shan X, Feng H, Chen C, Chen J, Qian Z (2013) Facile synthesis of halogenated carbon quantum dots as an important intermediate for surface modification. RSC Adv 3:9625–9628

    Article  CAS  Google Scholar 

  6. Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44(14):4743–4768

    Article  CAS  Google Scholar 

  7. Zuo P, Lu X, Sun Z, Guo Y, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183:519–542. doi:10.1007/s00604-015-1705-3

    Article  CAS  Google Scholar 

  8. Hu S, Trinchi A, Atkin P, Cole I (2015) Tunable photoluminescence across the entire visible Spectrum from carbon dots excited by white light. Angew Chem Int Ed 54:2970–2974

    Article  CAS  Google Scholar 

  9. Shi Y, Pramanik A, Tchounwou C, Pedraza F, Crouch RA, Chavva SR, Vangara A, Sinha SS, Jones S, Sardar D, Hawker C, Ray PC (2015) Multifunctional biocompatible graphene oxide quantum dots decorated magnetic Nanoplatform for efficient capture and two-photon imaging of rare tumor cells. ACS Appl Mater Interfaces 7:10935–10943

    Article  CAS  Google Scholar 

  10. Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H, Meng X, Wang P, Lee CS, Zhang W, Han X (2014) A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun 5:4596. doi:10.1038/ncomms5596

    CAS  Google Scholar 

  11. Ge J, Jia Q, Liu W, Guo L, Liu Q, Lan M, Zhang H, Meng X, Wang PF (2015) Red-emissive carbon dots for fluorescent, photoacoustic, and thermal Theranostics in living mice. Adv Mater 27:4169–4177

    Article  CAS  Google Scholar 

  12. Sun X, Brucknerb C, Lei Y (2015) One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission. Nanoscale 7:17278–17282

    Article  CAS  Google Scholar 

  13. Parvin N, Mandal TK (2016) Synthesis of a highly fluorescence nitrogen-doped carbon quantum dots bioimaging probe and its in vivo clearance and printing applications. RSC Adv 6:18134

    Article  CAS  Google Scholar 

  14. Jin SH, Kim DH, Jun GH, Hong SH, Jeon S (2013) Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7:1239–1245

    Article  CAS  Google Scholar 

  15. Zhu A, Qu Q, Shao Z, Kong BT (2012) Carbon-dot-based dual-emission Nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew Chem 124: 7297 Angew Chem Int Ed 51:7185

    Article  CAS  Google Scholar 

  16. Li C (2014) Imaging macrophages with nanoparticles. Nat Mater 13:110

    Article  CAS  Google Scholar 

  17. Gaiduk A, Yorulmaz M, Ruijgrok PV, Orrit M (2010) Room-temperature detection of a single molecule’s absorption by photothermal contrast. Science 330:353

    Article  CAS  Google Scholar 

  18. Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335:1458

    Article  CAS  Google Scholar 

  19. Maeda A, Bu J, Chen J, Zheng G, DaCosta RS (2014) Dual in vivo photoacoustic and fluorescence imaging of HER2 expression in breast tumors for diagnosis, margin assessment, and surgical guidance. Mol Imaging 13:1

    Google Scholar 

  20. Pu K, Shuhendler AJ, Jokerst JV, Mei J, Gambhir SS, Bao Z, Rao J (2014) Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol 9:233

    Article  CAS  Google Scholar 

  21. Nalwa HS (1991) Optical and X-ray photoelectron spectro-scopic studies of electrically conducting benzimidazobenzophenanthroline type ladder polymers original research article. Polymer 32:802–807

    Article  CAS  Google Scholar 

  22. Morgan WE, Stec WJ, Albridge RG, Wazer JRV (1971) π-bond feedback Interpretated from the binding energy of "2p" electrons of phosphorus. Inorg Chem 10:926–930

    Article  CAS  Google Scholar 

  23. Wu XLR (2006) Inhibition of catalytic oxidation of carbon/carbon composites by phosphorus. Carbon 44:141

    Article  CAS  Google Scholar 

  24. Rosas JM, Ruiz-Rosas R, Rodríguez-Mirasol J, Cordero T (2012) Kinetic study of the oxidation resistance of phosphorus-containing activated carbons. Carbon 50:1523

    Article  CAS  Google Scholar 

  25. Zhang J, Zhao Z, Xia Z, Dai L (2015) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 10:444–452

    Article  CAS  Google Scholar 

  26. Gong X, Hu Q, Paau MC, Zhang Y, Shuang S, Dong C, Choi MMF (2014) Red-green-blue fluorescent hollow carbon nanoparticles isolated from chromatographic fractions for cellular imaging. Nanoscale 6:8162–8170

    Article  CAS  Google Scholar 

  27. Cruz-Silva E, Cullen DA, Gu L, Romo-Herrera JM, Muñoz-Sandoval E, López-Urías F, Sumpter BG, Meunier V, Charlier JC, Smith DJ, Terrones H, Terrones M (2008) Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes. ACS Nano 2:441–448

    Article  CAS  Google Scholar 

  28. Gong X, Lu W, Liu Y, Li Z, Shuang S, Dong C, Choi MMF (2015) Low temperature synthesis of phosphorous and nitrogen co-doped yellow fluorescent carbon dots for sensing and bioimaging. J Mater Chem B 3:6813–6819

    Article  CAS  Google Scholar 

  29. Ananthanarayanan A, Wang Y, Routh P, Sk MA, Than A, Lin M, Zhang J, Chen J, Sun H, Chen P (2015) Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging. Nanoscale 7:8159–8165

    Article  CAS  Google Scholar 

  30. Amali AJ, Hoshino H, Wu C, Ando M, Xu Q (2014) From metal–organic framework to intrinsically fluorescent carbon nanodots. Chem Eur J 20:8279–8282

    Article  CAS  Google Scholar 

  31. Wang X, Cao L, Yang ST, Lu F, Meziani MJ, Tian L, Sun KW, Bloodgood MA, Sun YP (2010) Bandgap-Like Strong Fluorescence in Functionalized Carbon Nanoparticles. Angew. Chem. 122: 5438–5442 Angew Chem Int Ed 49:5310–5314

    Article  CAS  Google Scholar 

  32. Anilkumar P, Wang X, Cao L, Sahu S, Liu JH, Wang P, Korch K, Tackett KN II, Parenzan A, Sun YP (2011) Toward quantitatively fluorescent carbon-based “quantum” dots. Nanoscale 3:2023–2027

    Article  CAS  Google Scholar 

  33. Wang L, Zhu SZ, Wang HY, Qu SN, Zhang YL, Zhang JH, Chen QD, Xu HL, Han W, Yang B, Sun HB (2014) Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano 8:2541–2547

    Article  CAS  Google Scholar 

  34. Bhaisare ML, Talib A, Khan MS, Pandey S, Wu HF (2015) Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging. Microchim Acta 182(13–14):2173–2181

    Article  CAS  Google Scholar 

  35. Li H, Shao FQ, Zou SY, Yang QJ, Huang H, Feng JJ, Wang AJ (2016) Microwave-assisted synthesis of N, P-doped carbon dots for fluorescent cell imaging. Microchim Acta 183(2):821–826

    Article  CAS  Google Scholar 

  36. Wang F, Hao Q, Zhang Y, Xu Y, Lei W (2016) Fluorescence quenchometric method for determination of ferric ion using boron-doped carbon dots. Microchim Acta 183(1):273–279

    Article  Google Scholar 

  37. Guo Y, Yang L, Li W, Wang X, Shang Y, Li B (2016) Carbon dots doped with nitrogen and sulfur and loaded with copper (II) as a “turn-on” fluorescent probe for cystein, glutathione and homocysteine. Microchim Acta 183(4):1409–1416

    Article  CAS  Google Scholar 

  38. Yan F, Kong D, Luo Y, Ye Q, He J, Guo X, Chen L (2016) Carbon dots serve as an effective probe for the quantitative determination and for intracellular imaging of mercury (II). Microchim Acta 183(5):1611–1618

    Article  CAS  Google Scholar 

  39. Simões EF, Leitão JM, da Silva JCE (2016) Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitrite. Microchim Acta 183(5):1769–1777

    Article  Google Scholar 

  40. Kobayashi H, Watanabe R, Choyke PL (2013) Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 4:81

    Article  Google Scholar 

  41. Chong Y, Ma Y, Shen H, Tu X, Zhou X, Xu J, Dai J, Fan S, Zhang Z (2014) The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials 35:5041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

TKM and NP would like to thank SERB, DST, (Project File no- SR/FT/LS-76/2012) and DBT Government of India for providing financial support respectively. Also thanks to “TWAS Programme” for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nargish Parvin or Tapas K. Mandal.

Ethics declarations

All animal experiments reported herein were performed according to a protocol approved by the Peking University Institutional Animal Care and Use Committee.

Additional information

Both authors contributed equally to this work.

Electronic supplementary material

ESM 1

(DOCX 1.78 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvin, N., Mandal, T.K. Dually emissive P,N-co-doped carbon dots for fluorescent and photoacoustic tissue imaging in living mice. Microchim Acta 184, 1117–1125 (2017). https://doi.org/10.1007/s00604-017-2108-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2108-4

Keywords

Navigation