Microchimica Acta

, Volume 184, Issue 5, pp 1499–1508 | Cite as

Selective identification of specific aptamers for the detection of non-typhoidal salmonellosis in an apta-impedimetric sensing format

  • Preeti Pathania
  • Arunima Sharma
  • Binod Kumar
  • Praveen Rishi
  • C. Raman Suri
Original Paper


The authors report on an aptamer-based method for the detection of S. Typhimurium. The aptamers were identified by using a modified cell-based SELEX method (cell-SELEX) by adopting an alternating negative-positive selection strategy. Each cross-reactive population was used separately, with a focus on generating strain-specific aptamers in order to enhance selectivity. The aptamers were characterized and chemically modified with thiol groups at the 5′ end which enables covalent binding to gold nanoparticles on a screen printed carbon electrode (GNP-SPCE). The aptamer-modified GNP-SPCE was subsequently applied to impedimetric sensing of S. Typhimurium in water and food samples. Response is linear in the 10 to 105 CFU⋅mL−1 concentration range, and the limit of detection is ~10 CFU⋅mL−1. The assay can distinguish S. Typhimurium from S. Typhi and has been validated in water and spiked egg samples.

Graphical abstract

A modified Cell-SELEX approach for screening species specific aptamer for the impedimetric detection of non-typhoidal Salmonellosis.


S. Typhimurium Modified cell-SELEX Gold nanoparticles Impedimetry Aptasensor Microbial pathogen 



The authors thank DBT, India (Grant No. BT/IN/FINNISH/09/CRS/2013) for providing the financial support for this project. Authors also thank Dr. Priyanka Sabherwal and Munish Shorie for the technical support, and Mr. Deepak Bhatt for confocal studies.

Compliance with ethical standards

The authors declare that there is no conflict of interest regarding the publication of this paper.

Supplementary material

604_2017_2098_MOESM1_ESM.docx (1.4 mb)
ESM 1 (DOCX 1464 kb)


  1. 1.
    Andrews-Polymenis HL, Bäumler AJ, McCormick BA, Fang FC (2010) Taming the elephant: salmonella biology, pathogenesis, and prevention. Infect Immun 78:2356–2369CrossRefGoogle Scholar
  2. 2.
    Singh V (2013) Salmonella serovars and their host specificity. J Vet Sci 1(3):2348–9790Google Scholar
  3. 3.
    Gordon MA, Kankwatira AM, Mwafulirwa G, Walsh AL, Hopkins MJ, Parry CM, Faragher EB, Zijlstra EE, Heyderman RS, Molyneux ME (2010) Invasive non-typhoid salmonellae establish systemic intracellular infection in HIV-infected adults: an emerging disease pathogenesis. Infect Dis 50:953–962CrossRefGoogle Scholar
  4. 4.
    Centers for Disease Control and Prevention (CDC) (2016). Surveillance for foodborne disease outbreaks, United States, 2014, Annual Report. US Department of Health and Human Services, CDC, Atlanta, GeorgiaGoogle Scholar
  5. 5.
    Gordon MA (2011) Invasive non-typhoidal salmonella disease – epidemiology, pathogenesis and diagnosis. Curr Opin Infect Dis 24(5):484–489CrossRefGoogle Scholar
  6. 6.
    Chai Y, Li S, Horikawa S, Park MK, Vodyanoy V, Chin BA (2012) Rapid and sensitive detection of salmonella typhimurium on eggshells by using wireless biosensors. J Food Prot 75:631–636CrossRefGoogle Scholar
  7. 7.
    Herzig GPD, Aydin M, Dunigan S, Shah P, Jeong KC, Park SH, Ricke SC, Ahn S (2016) Magnetic bead-based immunoassay coupled with tyramide signal amplification for detection of Salmonella in foods. J Food Saf 36:383–391CrossRefGoogle Scholar
  8. 8.
    Burgess BA, Noyes NR, Bolte DS, Hyatt DR, van Metre DC, Morley PS (2015) Rapid Salmonella detection in experimentally inoculated equine faecal and veterinary hospital environmental samples using commercially available lateral flow immunoassays. Equine Vet J 47(1):119–122CrossRefGoogle Scholar
  9. 9.
    Law JW, Ab-Mutalib NS, Chan KG, Lee LH (2016) An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food. Front Microbiol 5:770Google Scholar
  10. 10.
    Mutreja R, Jariyal M, Pathania P, Sharma A, Sahoo DK, Suri CR (2016) Novel surface antigen based impedimetric immunosensor for detection of salmonella typhimurium in water and juice samples. Biosens Bioelectron 85:707–713CrossRefGoogle Scholar
  11. 11.
    Tombelli S, Minunni M, Mascini M (2007) Aptamer-based assays for diagnostics, environmental and food analysus. Biomol Eng 24:191–200CrossRefGoogle Scholar
  12. 12.
    Tan W, Wang H, Chen Y, Zhang X, Zhu H, Yang C, Yang R, Liu C (2011) Molecular aptamers for drug delivery. Trends Biotechnol 29:634–640CrossRefGoogle Scholar
  13. 13.
    Holzinger M, LeGoff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:1–10CrossRefGoogle Scholar
  14. 14.
    Sefah K, Shangguan D, Xiong X, O’Donoghue MB, Tan W (2010) Development of DNA aptamers using cell-SELEX. Nat Protoc 5:1169–1185CrossRefGoogle Scholar
  15. 15.
    Peng Z, Ling M, Ning Y, Deng L (2014) Rapid fluorescent detection of Escherichia coli K88 based on DNA aptamer library as direct and specific reporter combined with immuno-magnetic separation. J Fluoresc 24:1159–1168CrossRefGoogle Scholar
  16. 16.
    Duan N, Wu S, Chen X, Huang Y, Wang Z (2012) Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus. J Agric Food Chem 60:4034–4038CrossRefGoogle Scholar
  17. 17.
    Park HC, Baig IA, Lee SC, Moon JY, Yoon MY (2014) Development of ssDNA aptamers for the sensitive detection of salmonella typhimurium and salmonella enteritidis. Appl Biochem Biotechnol 174(2):793–802CrossRefGoogle Scholar
  18. 18.
    Yang M, Peng Z, Ning Y, Chen Y, Zhou Q, Deng L (2013) Highly specific and cost-efficient detection of Salmonella Paratyphi a combining aptamers with single-walled carbon nanotubes. Sensors 13:6865–6881CrossRefGoogle Scholar
  19. 19.
    Suh SH, Dwivedi HP, Choi SJ, Jaykus LA (2014) Selection and characterization of DNA aptamers specific for listeria species. Anal Biochem 459:39–45CrossRefGoogle Scholar
  20. 20.
    Duan N, Ding X, Wu S, Xia Y, Ma X, Wang Z, Chen J (2013) In vitro selection of a DNA aptamer targeted against Shigella dysenteriae. J Microbiol Methods 94(3):170–174CrossRefGoogle Scholar
  21. 21.
    Cella LN, Sanchez P, Zhong W, Myung NV, Chen W, Mulchandani A (2010) Nano aptasensor for protective antigen toxin of anthrax. Anal Chem 82:2042–2047CrossRefGoogle Scholar
  22. 22.
    Fan L, Zhao G, Shi H, Liu M, Li Z (2013) A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid. Biosens Bioelectron 43:12–18CrossRefGoogle Scholar
  23. 23.
    Sheikhzadeh E, Chamsaz M, Turner AP, Jager EW, Beni V (2016) Label-free impedimetric biosensor for salmonella typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer. Biosens Bioelectron 80:194–200CrossRefGoogle Scholar
  24. 24.
    Bagheryan Z, Raoof JB, Golabi M, Turner AP, Beni V (2016) Diazonium-based impedimetric aptasensor for the rapid label-free detection of Salmonella typhimurium in food sample. Biosens Bioelectron 80(16):566–573CrossRefGoogle Scholar
  25. 25.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415CrossRefGoogle Scholar
  26. 26.
    Bhalla V, Priyanka S, Pandey S, Suri CR (2012) Impedimetric label-free immunodetection of phenylurea class of herbicides. Sens Actuator B-Chem 171-172:1231–1237CrossRefGoogle Scholar
  27. 27.
    Taitt CRR, Shubin YSS, Angel R, Ligler FSS (2004) Detection of Salmonella enterica serovar typhimurium by using a rapid, array-based immunosensor. Appl Environ Microbiol 70:152–158CrossRefGoogle Scholar
  28. 28.
    Sabherwal P, Shorie M, Pathania P, Chaudhary S, Bhasin KK, Bhalla V, Suri CR (2014) Hybrid aptamer-antibody linked fluorescence resonance energy transfer based detection of trinitrotoluene. Anal Chem 86(15):7200–7204CrossRefGoogle Scholar
  29. 29.
    Marton S, Cleto F, Krieger MA, Cardoso J (2016) Isolation of an aptamer that binds specifically to E coli. PLoS One 11(4):1–17CrossRefGoogle Scholar
  30. 30.
    Prodromidis MI (2010) Impedimetric immunosensors - a review. Electrochim Acta 55(14):4227–4233CrossRefGoogle Scholar
  31. 31.
    Pejcic B, De-Marco R (2006) Impedance spectroscopy: over 35 years of electrochemical sensor optimization. Electrochim Acta 51:6217–6229CrossRefGoogle Scholar
  32. 32.
    Liu K, Yan X, Mao B, Wang S, Deng L (2016) Aptamer-based detection of Salmonella enteritidis using double signal amplification by Klenow fragment and dual fluorescence. Microchim Acta 183:643–649CrossRefGoogle Scholar
  33. 33.
    Lei P, Tang H, Ding S, Ding X, Zhu D, Shen B, Cheng Q, Yan Y (2015) Determination of the invA gene of Salmonella using surface plasmon resonance along with streptavidin aptamer amplification. Microchim Acta 182:289–296Google Scholar
  34. 34.
    Park JY, Jeong HY, Kim MI, Park TJ (2015) Colorimetric detection system for Salmonella typhimurium based on peroxidase-like activity of magnetic nanoparticles with DNA aptamers. J Nanomater 2015:9Google Scholar
  35. 35.
    Fei J, Dou W, Zhao G (2016) Amperometric immunoassay for the detection of salmonella pullorum using a screen-printed carbon electrode modified with gold nanoparticle-coated reduced graphene oxide and immunomagnetic beads. Microchim Acta 183:757–764CrossRefGoogle Scholar
  36. 36.
    Song Y, Li W, Duan Y, Li Z, Deng L (2014) Nicking enzyme-assisted biosensor for Salmonella enteritidis detection based on fluorescence resonance energy transfer. Biosens Bioelectron 55:400–404CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.CSIR-Institute of Microbial TechnologyChandigarhIndia
  2. 2.Department of MicrobiologyPanjab UniversityChandigarhIndia

Personalised recommendations