Microchimica Acta

, Volume 184, Issue 5, pp 1405–1415 | Cite as

Solid-phase microbead array for multiplex O-serotyping of Escherichia coli

  • Claudia Liebsch
  • Stefan Rödiger
  • Alexander Böhm
  • Jörg Nitschke
  • Jörg Weinreich
  • Angelika Fruth
  • Dirk Roggenbuck
  • Werner Lehmann
  • Uwe Schedler
  • Thomas Juretzek
  • Peter Schierack
Original Paper


Typing and classification of Escherichia coli (E. coli) according to cell wall components, like polysaccharides, is routinely done by serotyping. Given the presence of 188 known O-antigens, this process is complex. The authors present a proof-of-concept planar microbead array for multiplexed O-serotyping. Ten clinically relevant E. coli serotypes associated with high risk for diarrhea in humans were examined (O26, O55, O78, O118, O124, O127, O128, O142, O145 and O157). Antisera were assigned to specific microbead populations, which can be differentiated by size and fluorescence color. Automatted image processing and data analysis were conducted by a microscopic interpretation platform. Homogenous antiserum coating of the microbeads was demonstrated by an intra-population CV that ranges from 3.3 to 6.3% and by an inter-population CV of 9.5%. Typical detections limits are in the range from 0.31 to 0.71 refMFI. Significantly elevated fluorescence signals revealed that E. coli of a certain serogroup bound specifically to microbeads with the matching antiserum (p < 0.001). In our perception, the method represents a viable diagnostic tool for automated multiplex serotyping of E. coli. It enables simultaneous and high-throughput screening for different O-antigens by a simple staining and binding protocol.

Graphical abstract

Schematic of a planar microbead array for the typing and classification of E. coli according to cell wall components. Based on coated fluorescent microbeads, multiplex O-serotyping of E. coli is accomplished via fluorescence imaging.


Bacteria Screening Fluorescence Diagnosis Automation Imaging Image processing High-throughput Coating 



We thank Michael Schenker and Jörg Weinreich for excellent technical assistance. This work was supported by InnoProfile 03IP611, by InnoProfile-Transfer 03IPT611A and 03IPT611X funded by the Federal Ministry of Education and Research (BMBF, Germany).

Compliance with ethical standards

Dirk Roggenbuck has a management role and is a shareholder of GA Generic Assays GmbH. This company is a diagnostic manufacturer. Werner Lehmann has a management role and is a shareholder of Attomol GmbH. This company is a diagnostic manufacturer. Uwe Schedler has a management role and is a shareholder of PolyAn GmbH. This company is a supplier for diagnostic manufacturers. All other authors declare that they have no competing financial interests.


  1. 1.
    Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140. doi: 10.1038/nrmicro818 CrossRefGoogle Scholar
  2. 2.
    Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201Google Scholar
  3. 3.
    Durso LM, Bono JL, Keen JE (2005) Molecular serotyping of Escherichia coli O26:H11. Appl Environ Microbiol 71:4941–4944. doi: 10.1128/AEM.71.8.4941-4944.2005 CrossRefGoogle Scholar
  4. 4.
    Scheutz F, Cheasty T, Woodward D, Smith HR (2004) Designation of O174 and O175 to temporary O groups OX3 and OX7, and six new E. coli O groups that include verocytotoxin-producing E. coli (VTEC): O176, O177, O178, O179, O180 and O181. APMIS 112:569–584. doi: 10.1111/j.1600-0463.2004.apm1120903.x
  5. 5.
    Ørskov F, Ørskov I (1984) Serotyping of Escherichia coli*. In: Bergan T (ed) Methods Microbiol. Academic Press, London, pp 43–112Google Scholar
  6. 6.
    Iguchi A, Iyoda S, Kikuchi T, Ogura Y, Katsura K, Ohnishi M, Hayashi T, Thomson NR (2015) A complete view of the genetic diversity of the Escherichia coli O-antigen biosynthesis gene cluster. DNA Res 22:101–107. doi: 10.1093/dnares/dsu043 CrossRefGoogle Scholar
  7. 7.
    Roda A, Mirasoli M, Roda B, Bonvicini F, Colliva C, Reschiglian P (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178:7–28. doi: 10.1007/s00604-012-0824-3 CrossRefGoogle Scholar
  8. 8.
    Pividori MI, Alegret S (2010) Micro and nanoparticles in biosensing systems for food safety and environmental monitoring. An example of converging technologies. Microchim Acta 170:227–242. doi: 10.1007/s00604-010-0347-8 CrossRefGoogle Scholar
  9. 9.
    Xiong J, Wang W, Zhou Y, Kong W, Wang Z, Fu Z (2016) Ultra-sensitive chemiluminescent detection of Staphylococcus aureus based on competitive binding of Staphylococcus protein A-modified magnetic beads to immunoglobulin G. Microchim Acta 183:1507–1512. doi: 10.1007/s00604-016-1769-8 CrossRefGoogle Scholar
  10. 10.
    Rödiger S, Liebsch C, Schmidt C, Lehmann W, Resch-Genger U, Schedler U, Schierack P (2014) Nucleic acid detection based on the use of microbeads: a review. Microchim Acta 181:1151–1168. doi: 10.1007/s00604-014-1243-4 CrossRefGoogle Scholar
  11. 11.
    Liu Y, Yu J (2015) Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a review. Microchim Acta 183:1–19. doi: 10.1007/s00604-015-1623-4 CrossRefGoogle Scholar
  12. 12.
    Rödiger S, Schierack P, Böhm A, Nitschke J, Berger I, Frömmel U, Schmidt C, Ruhland M, Schimke I, Roggenbuck D, Lehmann W, Schröder C (2013) A highly versatile microscope imaging technology platform for the multiplex real-time detection of biomolecules and autoimmune antibodies. Adv Biochem Eng Biotechnol 133:35–74. doi: 10.1007/10_2011_132 Google Scholar
  13. 13.
    Willitzki A, Hiemann R, Peters V, Sack U, Schierack P, Rödiger S, Anderer U, Conrad K, Bogdanos DP, Reinhold D, Roggenbuck D (2012) New platform technology for comprehensive serological diagnostics of autoimmune diseases. Clin Dev Immunol 2012:284740. doi: 10.1155/2012/284740 CrossRefGoogle Scholar
  14. 14.
    Rödiger S, Ruhland M, Schmidt C, Schröder C, Grossmann K, Böhm A, Nitschke J, Berger I, Schimke I, Schierack P (2011) Fluorescence dye adsorption assay to quantify carboxyl groups on the surface of poly(methyl methacrylate) microbeads. Anal Chem 83:3379–3385. doi: 10.1021/ac103277s CrossRefGoogle Scholar
  15. 15.
    Doolittle RF (1998) Microbial genomes opened up. Nature 392:339–342. doi: 10.1038/32789 CrossRefGoogle Scholar
  16. 16.
    Muniesa M, Hammerl JA, Hertwig S, Appel B, Brüssow H (2012) Shiga toxin-producing Escherichia coli O104:H4: a new challenge for microbiology. Appl Environ Microbiol 78:4065–4073. doi: 10.1128/AEM.00217-12 CrossRefGoogle Scholar
  17. 17.
    Buchholz U, Bernard H, Werber D, Böhmer MM, Remschmidt C, Wilking H, Deleré Y, an der Heiden M, Adlhoch C, Dreesman J, Ehlers J, et al. (2011) German outbreak of Escherichia coli O104:H4 associated with sprouts. N Engl J Med 365:1763–1770. doi: 10.1056/NEJMoa1106482
  18. 18.
    Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO Jr (1996) Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10:1227–1232. doi: 10.1002/(SICI)1097-0231(19960731)10:10<1227::AID-RCM659>3.0.CO;2-6 CrossRefGoogle Scholar
  19. 19.
    Clark AE, Kaleta EJ, Arora A, Wolk DM (2013) Matrix-assisted laser desorption ionization–time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 26:547–603. doi: 10.1128/CMR.00072-12 CrossRefGoogle Scholar
  20. 20.
    Croxatto A, Prod’hom G, Greub G (2012) Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 36:380–407. doi: 10.1111/j.1574-6976.2011.00298.x CrossRefGoogle Scholar
  21. 21.
    Ferreira L, Sánchez-Juanes F, González-Avila M, Cembrero-Fuciños D, Herrero-Hernández A, González-Buitrago JM, Muñoz-Bellido JL (2010) Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:2110–2115. doi: 10.1128/JCM.02215-09 CrossRefGoogle Scholar
  22. 22.
    Segawa S, Sawai S, Murata S, Nishimura M, Beppu M, Sogawa K, Watanabe M, Satoh M, Matsutani T, Kobayashi M, Iwadate Y et al (2014) Direct application of MALDI-TOF mass spectrometry to cerebrospinal fluid for rapid pathogen identification in a patient with bacterial meningitis. Clin Chim Acta 435:59–61. doi: 10.1016/j.cca.2014.04.024 CrossRefGoogle Scholar
  23. 23.
    Brogden KA, Guthmiller JM, Taylor CE (2005) Human polymicrobial infections. Lancet 365:253–255. doi: 10.1016/S0140-6736(05)17745-9 CrossRefGoogle Scholar
  24. 24.
    Ye F, Li MS, Taylor JD, Nguyen Q, Colton HM, Casey WM, Wagner M, Weiner MP, Chen J (2001) Fluorescent microsphere-based readout technology for multiplexed human single nucleotide polymorphism analysis and bacterial identification. Hum Mutat 17:305–316. doi: 10.1002/humu.28 CrossRefGoogle Scholar
  25. 25.
    Jin S-Q, Yin B-C, Ye B-C (2009) Multiplexed bead-based Mesofluidic system for detection of food-borne pathogenic bacteria. Appl Environ Microbiol 75:6647–6654. doi: 10.1128/AEM.00854-09 CrossRefGoogle Scholar
  26. 26.
    Frömmel U, Lehmann W, Rödiger S, Böhm A, Nitschke J, Weinreich J, Groß J, Roggenbuck D, Zinke O, Ansorge H, Vogel S et al (2013) Adhesion of human and animal Escherichia coli strains in association with their virulence-associated genes and phylogenetic origins. Appl Environ Microbiol 79:5814–5829. doi: 10.1128/AEM.01384-13 CrossRefGoogle Scholar
  27. 27.
    Grossmann K, Röber N, Hiemann R, Rödiger S, Schierack P, Reinhold D, Laass MW, Conrad K, Roggenbuck D (2016) Simultaneous detection of celiac disease-specific IgA antibodies and total IgA. Autoimmun Highlights. doi: 10.1007/s13317-016-0073-2 Google Scholar
  28. 28.
    Schmidt C, Rödiger S, Gruner M, Moncsek A, Stohwasser R, Hanack K, Schierack P, Schröder C (2016) Multiplex localization of sequential peptide epitopes by use of a planar microbead chip. Anal Chim Acta 908:150–160. doi: 10.1016/j.aca.2015.12.030 CrossRefGoogle Scholar
  29. 29.
    Rödiger S, Böhm A, Schimke I (2013) Surface melting curve analysis with R. R J 5:37–53Google Scholar
  30. 30.
    Rödiger S, Burdukiewicz M, Blagodatskikh KA, Schierack P (2015) R as an environment for the reproducible analysis of DNA amplification experiments. R J 7:127–150Google Scholar
  31. 31.
    Schierack P, Rödiger S, Kolenda R, Hiemann R, Berger E, Grzymajło K, Swidsinski A, Juretzek T, Meissner D, Mydlak K, Reinhold D, et al. (2014) Species-specific and pathotype-specific binding of bacteria to zymogen granule membrane glycoprotein 2 (GP2). Gut gutjnl-2014-307854. doi: 10.1136/gutjnl-2014-307854
  32. 32.
    Grossmann K, Roggenbuck D, Schröder C, Conrad K, Schierack P, Sack U (2011) Multiplex assessment of non-organ-specific autoantibodies with a novel microbead-based immunoassay. Cytom Part J Int Soc Anal Cytol 79:118–125. doi: 10.1002/cyto.a.21009 CrossRefGoogle Scholar
  33. 33.
    Scholz J, Grossmann K, Knütter I, Hiemann R, Sowa M, Röber N, Rödiger S, Schierack P, Reinhold D, Bogdanos DP, Meroni PL et al (2015) Second generation analysis of antinuclear antibody (ANA) by combination of screening and confirmatory testing. Clin Chem Lab Med 53:1991–2002. doi: 10.1515/cclm-2015-0083 CrossRefGoogle Scholar
  34. 34.
    Schierack P, Rödiger S, Kuhl C, Hiemann R, Roggenbuck D, Li G, Weinreich J, Berger E, Nolan LK, Nicholson B, Römer A, et al. (2013) Porcine E. coli: virulence-associated genes, resistance genes and adhesion and probiotic activity tested by a new screening method. PloS One 8:e59242. doi: 10.1371/journal.pone.0059242
  35. 35.
    Lerouge I, Vanderleyden J (2002) O-antigen structural variation: mechanisms and possible roles in animal/plant–microbe interactions. FEMS Microbiol Rev 26:17–47. doi: 10.1111/j.1574-6976.2002.tb00597.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Claudia Liebsch
    • 1
  • Stefan Rödiger
    • 1
  • Alexander Böhm
    • 1
  • Jörg Nitschke
    • 1
  • Jörg Weinreich
    • 1
  • Angelika Fruth
    • 2
  • Dirk Roggenbuck
    • 1
    • 3
  • Werner Lehmann
    • 4
  • Uwe Schedler
    • 5
  • Thomas Juretzek
    • 6
  • Peter Schierack
    • 1
  1. 1.Institute of BiotechnologyBrandenburg University of Technology Cottbus-SenftenbergSenftenbergGermany
  2. 2.Branch WernigerodeRobert Koch-InstituteWernigerodeGermany
  3. 3.GA Generic Assays GmbHDahlewitzGermany
  4. 4.Attomol GmbHLiptenGermany
  5. 5.PolyAn GmbHBerlinGermany
  6. 6.Carl-Thiem-Klinikum CottbusCottbusGermany

Personalised recommendations