Skip to main content
Log in

Determination of copper(II) based on its inhibitory effect on the cathodic electrochemiluminescence of lucigenin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A simple method is described for the determination of copper(II) ions based on the cathodic electrochemiluminescence (ECL) of lucigenin which is quenched by Cu(II). The blue ECL is best induced at −0.45 V (vs. Ag/AgCl) at a scan rate of 50 mV·s−1. Under optimum conditions, the calibration plot is linear in the 3.0 to 1000 nM Cu(II) concentration range. The limit of detection is 2.1 nM at a signal-to-noise ratio of 3. Compared to other analytical methods, the one presented here is simple, fast, selective and cost-effective. It has been successfully applied in the analysis of copper ions in spiked tap water samples with recoveries ranging from 93.0% (at 50 nM concentration) to 105.7% (at 150 nM).

The inhibitory effect of Cu(II) on the cathodic electrochemiluminescence of lucigenin enables determination of Cu(II) with a 2.1 nM detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang L, Han Y, Zhao F, Shi G, Tian Y (2015) A selective and accurate ratiometric electrochemical biosensor for monitoring of Cu2+ ions in a rat brain. Anal Chem 87:2931–2936

    Article  CAS  Google Scholar 

  2. Su Y, Shi B, Liao S, Qin Y, Zhang L, Huang M, Zhao S (2016) Facile preparation of fluorescent polydihydroxyphenylalanine nanoparticles for label-free detection of copper ions. Sensor Actuat B-Chem 225:334–339

    Article  CAS  Google Scholar 

  3. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  CAS  Google Scholar 

  4. Verwilst P, Sunwoo K, Kim JS (2015) The role of copper ions in pathophysiology and fluorescent sensors for the detection thereof. Chem Commun 51:5556–5571

    Article  CAS  Google Scholar 

  5. Wang F, Orbach R, Willner I (2012) Detection of metal ions (Cu2+, Hg2+) and cocaine by using ligation DNAzyme machinery. Chem Eur J 18:16030–16036

    Article  CAS  Google Scholar 

  6. Wustoni S, Hideshima S, Kuroiwa S, Nakanishi T, Mori Y, Osaka T (2015) Label-free detection of Cu(II) in a human serum sample by using a prion protein-immobilized FET sensor. Analyst 140:6485–6488

    Article  CAS  Google Scholar 

  7. Xiong J-J, Huang P-C, Zhang C-Y, F-Y W (2016) Colorimetric detection of Cu2+ in aqueous solution and on the test kit by 4-aminoantipyrine derivatives. Sensor Actuat B-Chem 226:30–36

    Article  CAS  Google Scholar 

  8. Ocana C, Malashikhina N, del Valle M, Pavlov V (2013) Label-free selective impedimetric detection of Cu2+ ions using catalytic DNA. Analyst 138:1995–1999

    Article  CAS  Google Scholar 

  9. Qing Z, Zhu L, Yang S, Cao Z, He X, Wang K, Yang R (2016) In situ formation of fluorescent copper nanoparticles for ultrafast zero-background Cu2+ detection and its toxicides screening. Biosens Bioelectron 78:471–476

    Article  CAS  Google Scholar 

  10. Becker JS, Matusch A, Depboylu C, Dobrowolska J, Zoriy MV (2007) Quantitative imaging of selenium, copper, and zinc in thin sections of biological tissues (Slugs − Genus Arion) measured by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 79:6074–6080

    Article  CAS  Google Scholar 

  11. Peralta-Domínguez D, Rodriguez M, Ramos-Ortiz G, Maldonado JL, Luna-Moreno D, Ortiz-Gutierrez M, Barba V (2016) A Schiff base derivative used as sensor of copper through colorimetric and surface plasmon resonance techniques. Sensor Actuat B-Chem 225:221–227

    Article  Google Scholar 

  12. Lin T-W, Huang S-D (2001) Direct and simultaneous determination of copper, chromium, aluminum, and manganese in urine with a Multielement graphite furnace atomic absorption spectrometer. Anal Chem 73:4319–4325

    Article  CAS  Google Scholar 

  13. Gan X, Zhao H, Chen S, Yu H, Quan X (2015) Three-dimensional porous HxTiS2 Nanosheet-Polyaniline Nanocomposite electrodes for directly detecting trace Cu(II) ions. Anal Chem 87:5605–5613

    Article  CAS  Google Scholar 

  14. Hormozi-Nezhad MR, Abbasi-Moayed S (2014) A sensitive and selective colorimetric method for detection of copper ions based on anti-aggregation of unmodified gold nanoparticles. Talanta 129:227–232

    Article  CAS  Google Scholar 

  15. Mayr T, Werner T (2002) Highly selective optical sensing of copper(II) ions based on fluorescence quenching of immobilised Lucifer yellow. Analyst 127:248–252

    Article  CAS  Google Scholar 

  16. Deng P, Fei J, Zhang J, Li J (2008) Determination of trace copper by adsorptive voltammetry using a Multiwalled carbon nanotube modified carbon paste electrode. Electroanal 20:1215–1219

    Article  CAS  Google Scholar 

  17. Van den Berg CMG (1984) Determining trace concentrations of copper in water by cathodic film stripping voltammetry with adsorptive collection. Anal Lett 17:2141–2157

    Article  CAS  Google Scholar 

  18. Hu L, Xu G (2010) Applications and trends in electrochemiluminescence. Chem Soc Rev 39:3275–3304

    Article  CAS  Google Scholar 

  19. Liu Z, Qi W, Xu G (2015) Recent advances in electrochemiluminescence. Chem Soc Rev 44:3117–3142

    Article  CAS  Google Scholar 

  20. Hai H, Yang F, Li J (2014) Highly sensitive electrochemiluminescence “turn-on” aptamer sensor for lead(II) ion based on the formation of a G-quadruplex on a graphene and gold nanoparticles modified electrode. Microchim Acta 181:893–901

    Article  CAS  Google Scholar 

  21. Miao W (2008) Electrogenerated chemiluminescence and its Biorelated applications. Chem Rev 108:2506–2553

    Article  CAS  Google Scholar 

  22. Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104:3003–3036

    Article  CAS  Google Scholar 

  23. Gleu K, Petsch W (1935) Die chemiluminescenz der dimethyl-diacridyliumsalze. Angew Chem 48:57–59

    Article  CAS  Google Scholar 

  24. Sun YG, Cui H, Qin LX (2001) Study of electrochemiluminescence of lucigenin at glassy carbon electrodes in NaOH solution. J Luminesc 92:205–211

    Article  CAS  Google Scholar 

  25. Qi H, Zhang C (2004) Electrogenerated chemiluminescence reaction of lucigenin with isatin at a platinum electrode. Luminescence 19:21–25

    Article  Google Scholar 

  26. Cui H, Dong Y-P (2006) Multichannel electrogenerated chemiluminescence of lucigenin in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled gold electrode. J Electroanal Chem 595:37–46

    Article  CAS  Google Scholar 

  27. Lin Z, Sun J, Chen J, Guo L, Chen G (2007) Enhanced electrochemiluminescent of lucigenin at an electrically heated cylindrical microelectrode. Electrochem Commun 9:269–274

    Article  CAS  Google Scholar 

  28. Heller MI, Croot PL (2010) Superoxide decay kinetics in the Southern Ocean. Environ Sci Technol 44:191–196

    Article  CAS  Google Scholar 

  29. Santini C, Pellei M, Lobbia GG, Fedeli D, Falcioni G (2003) Synthesis and characterization of new copper(I) complexes containing 4-(diphenylphosphane)benzoic acid and “scorpionate” ligands with “in vitro” superoxide scavenging activity. J Inorg Biochem 94:348–354

    Article  CAS  Google Scholar 

  30. Lim H, Ju Y, Kim J (2016) Tailoring catalytic activity of Pt nanoparticles encapsulated inside Dendrimers by tuning nanoparticle sizes with Subnanometer accuracy for sensitive chemiluminescence-based analyses. Anal Chem 88:4751–4758

    Article  CAS  Google Scholar 

  31. Dennany L, Keyes TE, Forster RJ (2008) Surface confinement and its effects on the luminescence quenching of a ruthenium-containing metallopolymer. Analyst 133:753–759

    Article  CAS  Google Scholar 

  32. Ng SM, Koneswaran M, Narayanaswamy R (2016) A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Adv 6:21624–21661

    Article  CAS  Google Scholar 

  33. Zhang L, Shang L, Dong S (2008) Sensitive and selective determination of Cu2+ by electrochemiluminescence of CdTe quantum dots. Electrochem Commun 10:1452–1454

    Article  CAS  Google Scholar 

  34. Cheng N, Jiang P, Liu Q, Tian J, Asiri AM, Sun X (2014) Graphitic carbon nitride nanosheets: one-step, high-yield synthesis and application for Cu2+ detection. Analyst 139:5065–5068

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 21475123 and 21505128).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or Guobao Xu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Hui, P., Qi, L. et al. Determination of copper(II) based on its inhibitory effect on the cathodic electrochemiluminescence of lucigenin. Microchim Acta 184, 693–697 (2017). https://doi.org/10.1007/s00604-016-2054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2054-6

Keywords

Navigation