Skip to main content
Log in

Tailor designed exclusive carbon nanomaterial electrodes for off-chip and on-chip electrochemical detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe tailor-designed electrodes based on the use of films of carbonaceous nanomaterials with demostrated conductivitiy at the microscale. These represent a unique conductive material for deposition on adaptable nonconductive substrates. Single-walled and multi-walled carbon nanotubes as well as graphene scaffold film electrodes (SFEs) were designed, and their electroanalytical performance was evaluated by using two different designs. The first is a 3-electrode configuration for off-chip detection, and the second is one for on-chip detection of the biomarkers dopamine and catechol at +0.70 V detection potential (vs. Ag/AgCl). The SFEs were fabricated by filtration of conducting carbon nanomaterials using a tailored template. In our perception, they pave the way for a wide field of opportunities in off-chip and microfluidic electrochemistry because of their reliability, ease of fabrication and remarkable performance that is based on the exclusive use of the carbon nanomaterial transducers.

Schematic of tailor-templated electrodes based on films of carbonaceous nanomaterials as unique conductive material on adaptable non-conductive substrates for off-chip and on-chip detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  2. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  3. Martín A, Escarpa A (2014) Graphene: the cutting–edge interaction between chemistry and electrochemistry. Trend Anal Chem 56:13–26

    Article  Google Scholar 

  4. Ambrosi A, Chua CK, Latiff NM, Loo AH, Wong CHA, Eng AYS, Bonanni A, Pumera M (2016) Graphene and its electrochemistry – an update. Chem Soc Rev 45:2458–2493

    Article  Google Scholar 

  5. Yang C, Denno ME, Pyakurel P, Venton BJ (2015) Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review. Anal Chim Acta 887:17–37

    Article  CAS  Google Scholar 

  6. Tiwari JN, Vij V, Kemp KC, Kim KS (2016) Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano 10:46–80

    Article  CAS  Google Scholar 

  7. Baptista FR, Belhout SA, Giordanib S, Quinn SJ (2015) Recent developments in carbon nanomaterial sensors. Chem Soc Rev 44:4433–4453

    Article  CAS  Google Scholar 

  8. Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:4146–4157

    Article  CAS  Google Scholar 

  9. Jankovský O, Marvan P, Novácek M, Luxa J, Mazánek V, Klímová K, Sedmidubsky D, Sofer Z (2016) Synthesis procedure and type of graphite oxide strongly influence resulting graphene properties. Materials Today 4:45–53

    Article  Google Scholar 

  10. Bahadır EB, Sezgintürk MK (2016) Applications of graphene in electrochemical sensing and biosensing. Trends Anal Chem 76:1–14

    Article  Google Scholar 

  11. Brownson DAC, Banks CE (2010) Graphene electrochemistry: an overview of potential applications. Analyst 135:2768–2778

    Article  CAS  Google Scholar 

  12. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. Trends Anal Chem 29:954–965

    Article  CAS  Google Scholar 

  13. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41

    Article  CAS  Google Scholar 

  14. Martin A, Hernández-Ferrer J, Vázquez L, Martínez MT, Escarpa A (2014) Controlled chemistry of tailored graphene nanoribbons for electrochemistry: a rational approach to optimizing molecule detection. RSC Adv 4:132–139

    Article  CAS  Google Scholar 

  15. Chua CK, Ambrosi A, Pumera M (2011) Graphene based nanomaterials as electrochemical detectors in lab-on-a-chip devices. Electrochem Comm 13:517–519

    Article  CAS  Google Scholar 

  16. Chua CK, Pumera M (2013) Chemically modified graphenes as detectors in lab-on-Chip device. Electroanal 25:945–950

    Article  CAS  Google Scholar 

  17. Cinti S, Arduini F, Carbone M, Sansone L, Cacciotti I, Moscone D, Palleschi G (2015) Screen-printed electrodes modified with carbon nanomaterials: a comparison among carbon black, carbon nanotubes and graphene. Electroanalysis 27:2230–2238

    Article  CAS  Google Scholar 

  18. Batalla P, Martín A, López MA, González MC, Escarpa A (2015) Enzyme-based microfluidic chip coupled to graphene electrodes for the detection of d-amino acid enantiomer-biomarkers. Anal Chem 87:5074–5078

    Article  CAS  Google Scholar 

  19. Martín A, Batalla P, Hernández-Ferrer J, Martínez MT, Escarpa A (2015) Graphene oxide nanoribbon-based sensors for the simultaneous bio-electrochemical enantiomeric resolution and analysis of amino acid biomarkers. Biosens Bioelectron 68:163–167

    Article  Google Scholar 

  20. Vilela D, Ansón-Casaos A, Martínez MT, González MC, Escarpa A (2012) High NIR-purity index single-walled carbon nanotubes for electrochemical sensing in microfluidic chips. Lab Chip 12:2006–2014

    Article  CAS  Google Scholar 

  21. Su WY, Wang SM, Cheng SH (2011) Electrochemically pretreated screen-printed carbon electrodes for the simultaneous determination of aminophenol isomers. J Electroanal Chem 651:166–172

    Article  CAS  Google Scholar 

  22. Barton J, González-García MB, Hernández-Santos MB, Fanjul-Bolado P, Ribotti A, McCaul M, Diamond D, Magni P (2016) Screen-printed electrodes for environmental monitoring of heavy metal ions: a review. Microchim Acta 183:503–517

    Article  CAS  Google Scholar 

  23. Bandodkar AJ, Nuñez-Flores R, Jia W, Wang J (2015) All-printed stretchable electrochemical devices. Adv Mater 27:3060–3065

    Article  CAS  Google Scholar 

  24. Xiao N, Venton B (2012) Rapid, sensitive detection of neurotransmitters at microelectrodes modified with self-assembled SWCNT forests. Anal Chem 84:7816–7822

    Article  CAS  Google Scholar 

  25. Xiang L, Yu P, Hao J, Zhang M, Zhu L, Dai L et al (2014) Vertically aligned carbon nanotube-sheathed carbon fibers as pristine microelectrodes for selective monitoring of ascorbate in vivo. Anal Chem 86:3909–3914

    Article  CAS  Google Scholar 

  26. Vilela D, Garoz J, Colina A, González MC, Escarpa A (2012) Carbon nanotubes press-transferred on PMMA substrates as exclusive transducers for electrochemical microfluidic sensing. Anal Chem 84:10838–10844

    Article  CAS  Google Scholar 

  27. Vilela D, Martin A, González MC, Escarpa A (2014) Fast and reliable class-selective isoflavone index determination on carbon nanotube press-transferred electrodes using microfluidic chips. Analyst 139:2342–2347

    Article  CAS  Google Scholar 

  28. Gomez FJ, Martin A, Silva MF, Escarpa A (2015) Microchip electrophoresis-single wall carbon nanotube press-transferred electrodes for fast and reliable electrochemical sensing of melatonin and its precursors. Electrophoresis 36:1880–1885

    Article  CAS  Google Scholar 

  29. Garoz-Ruiz J, Heras A, Palmero S, Colina A (2015) Development of a novel Bidimensional spectroelectrochemistry cell using transfer single-walled carbon nanotubes films as optically transparent electrodes. Anal Chem 87:6233–6239

    Article  CAS  Google Scholar 

  30. Chen A, Chatterjee S (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 42:5425–5438

    Article  CAS  Google Scholar 

  31. Fagan-Murphy A, Whitby RLD, Patel AJ (2013) Buckycolumn electrodes: a practical andimproved alternative to conventional materials utilised for biological electrochemical monitoring. Mater Chem B 1:4359–4363

    Article  CAS  Google Scholar 

  32. Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20:3557–3561

    Article  CAS  Google Scholar 

  33. Brown B, Swain B, Hiltwine J, Brooks DB, Zhou Z (2014) Carbon nanosheet buckypaper: a graphene-carbon nanotube hybrid material for enhanced supercapacitor performance. J. Power Sources 272:979–986

    Article  CAS  Google Scholar 

  34. Wang D, Li F, Zhao J, Ren W, Chen Z, Tan J, Wu Z, Gentle I, Lu GQ, Cheng H (2009) Fabrication of graphene/Polyaniline composite paper via in situ anodic Electropolymerization for high-performance flexible electrode. ACS Nano 3:1745–1752

    Article  CAS  Google Scholar 

  35. Sieben JM, Ansón-Casaos A, Montilla F, Martínez MT, Morallón E (2014) Electrochemical behaviour of different redox probes on single wall carbon nanotube buckypaper-modified electrodes. Electrochim Acta 135:404–411

    Article  CAS  Google Scholar 

  36. Xiao F, Song J, Gao H, Zan X, Xu R, Duan H (2012) Coating graphene paper with 2D-assembly of Electrocatalytic nanoparticles: a modular approach toward high-performance flexible electrodes. ACS Nano 6:100–110

    Article  CAS  Google Scholar 

  37. Dong S, Xi J, Wu Y, Liu H, Fu C, Liu H, Xiao F (2015) High loading MnO2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells. Anal Chim Acta 853:200–206

    Article  CAS  Google Scholar 

  38. Wang Y, Ping J, Ye Z, Wu J, Ying Y (2013) Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157:H7. Biosens Bioelectron 49:492–498

    Article  CAS  Google Scholar 

  39. Joshia RK, Alwarappanb S, Yoshimurac M, Sahajwallaa V, Nishinad Y (2015) Graphene oxide: the new membrane material. Applied Materials Today 1:1–12

    Article  Google Scholar 

  40. Martin A, Vazquez L, Escarpa A (2016) Carbon nanomaterial scaffold films with conductivity at micro and sub-micron levels. J Mater Chem A 4:13142–13147

    Article  CAS  Google Scholar 

  41. Xu Y, Liu M, Kong N, Liu J (2016) Lab-on-paper micro- and nano-analytical devices: fabrication, modification, detection and emerging applications. Microchim Acta 183:1521–1542

    Article  CAS  Google Scholar 

  42. Chua CK, Ambrosi A, Pumera M (2011) Graphene based nanomaterials as electrochemical detectors in lab-on-a-chip devices. Electrochem Commun 13:517–519

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the financial support from the Spanish Ministry of Economy and Competitiveness CTQ 2014-58643-R and from the Nanoavansens program from the Community of Madrid (S2013/MIT-3029). A.M. acknowledges the FPU Fellowship received from Spanish Ministry of Education, Culture and Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Escarpa.

Ethics declarations

The authors declare that they have no competing interests

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín, A., Escarpa, A. Tailor designed exclusive carbon nanomaterial electrodes for off-chip and on-chip electrochemical detection. Microchim Acta 184, 307–313 (2017). https://doi.org/10.1007/s00604-016-2020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2020-3

Keywords

Navigation