Skip to main content
Log in

Microchip HPLC separations monitored simultaneously by coherent anti-Stokes Raman scattering and fluorescence detection

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Coherent anti-Stokes Raman scattering (CARS) was evaluated and applied to process monitoring in chip-based high-performance liquid chromatography (HPLC). By stimulating the C≡N-vibration of acetonitrile via laser excitation at 1064 nm and 858.3 nm, solvent gradients can be monitored in real-time. The approach can also be applied to indirect detection, which is exemplarily shown for the separation of short chain alcohols with an eluent containing acetonitrile. CARS was also combined with epi-fluorescence detection by integrating a 365 nm LED as a third excitation source. This allows fluorescent analytes to be detected in parallel to tracing the acetonitrile fraction of the eluent by CARS. This was applied to separate polycyclic aromatic hydrocarbons within 120 s on custom HPLC glass chips using gradient elution. In this proof of concept study, presenting the first application of CARS in chromatography, the percentage of acetonitrile in the eluent or rather high amounts of alcohols can be traced. If combined with fluorescence, polycyclic aromatic hydrocarbons were detected at the 1 μg·mL−1 range.

Parallel coherent anti-Stokes Raman scattering (CARS) and epi-fluorescence detection is realized for microchip liquid chromatography (chip-HPLC) for the analysis of polycyclic aromatic hydrocarbons. Solvent gradients and dead time (t0) can be monitored in real-time by stimulating the acetonitrile C≡N vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Schlücker S, Schaeberle MD, Huffman SW, Levin IW (2003) Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies. Anal Chem 75:4312–4318

    Article  Google Scholar 

  2. Park T, Lee M, Choo J, Kim Y, Lee EK, Kim DJ, Lee SH (2004) Analysis of passive mixing behavior in a poly (dimethylsiloxane) microfluidic channel using confocal fluorescence and Raman microscopy. Appl Spectrosc 58:1172–1179

    Article  CAS  Google Scholar 

  3. Salmon JB, Ajdari A, Tabeling P, Servant L, Talaga D, Joanicot M (2005) In situ Raman imaging of interdiffusion in a microchannel. Appl Phys Lett 86:094106

    Article  Google Scholar 

  4. Chen L, Choo J (2008) Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis 29:1815–1828

    Article  CAS  Google Scholar 

  5. Li DW, Zhai WL, Li YT, Long YT (2014) Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim Acta 181(1–2):23–43

    Article  CAS  Google Scholar 

  6. Syme CD, Martino C, Yusvana R, Sirimuthu NM, Cooper JM (2011) Quantitative characterization of individual microdroplets using surface-enhanced resonance Raman scattering spectroscopy. Anal Chem 84:1491–1495

    Article  Google Scholar 

  7. März A, Ackermann KR, Malsch D, Bocklitz T, Henkel T, Popp J (2009) Towards a quantitative SERS approach–online monitoring of analytes in a microfluidic system with isotope-edited internal standards. J Biophotonics 2:232–242

    Article  Google Scholar 

  8. Strehle KR, Cialla D, Rösch P, Henkel T, Köhler M, Popp J (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79:1542–1547

    Article  CAS  Google Scholar 

  9. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  10. Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walter DG, Natan MJ (1995) Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 267:1629–1632

    Article  CAS  Google Scholar 

  11. Joseph V, Gensler M, Seifert S, Gernert U, Rabe JP, Kneipp J (2012) Nanoscopic properties and application of mix-and-match plasmonic surfaces for microscopic SERS. J Phys Chem C 116:6859–6865

    Article  CAS  Google Scholar 

  12. Joseph V, Engelbrekt C, Zhang J, Gernert U, Ulstrup J, Kneipp J (2012) Characterizing the kinetics of nanoparticle-catalyzed reactions by surface-enhanced Raman scattering. Angew Chem Int Ed 51:7592–7596

    Article  CAS  Google Scholar 

  13. Meier TA, Poehler E, Kemper F, Pabst O, Jahnke HG, Beckert E, Robitzki A, Belder D (2015) Fast electrically assisted regeneration of on-chip SERS substrates. Lab Chip 15:2923–2927

    Article  CAS  Google Scholar 

  14. Moore JS, Jensen KF (2014) “Batch” kinetics in flow: online IR analysis and continuous control. Angew Chem Int Ed 53:470–473

    Article  CAS  Google Scholar 

  15. Ehlert S, Tallarek U (2007) High-pressure liquid chromatography in lab-on-a-chip devices. Anal Bioanal Chem 388:517–520

    Article  CAS  Google Scholar 

  16. El-Diasty F (2011) Coherent anti-stokes Raman scattering: spectroscopy and microscopy. Vib Spectrosc 55:1–37

    Article  CAS  Google Scholar 

  17. Evans CL, Xie XS (2008) Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem 1:883–909

    Article  CAS  Google Scholar 

  18. Wang HW, Bao N, Le TL, Lu C, Cheng JX (2008) Microfluidic CARS cytometry. Opt Express 16:5782–5789

    Article  CAS  Google Scholar 

  19. Bao N, Le TT, Cheng JX, Lu C (2010) Microfluidic electroporation of tumor and blood cells: observation of nucleus expansion and implications on selective analysis and purging of circulating tumor cells. Integr Biol 2:113–120

    Article  CAS  Google Scholar 

  20. Camp CH, Yegnanarayanan S, Eftekhar AA, Sridhar H, Adibi A (2009) Multiplex coherent anti-stokes Raman scattering (MCARS) for chemically sensitive, label-free flow cytometry. Opt Express 17:22879–22889

    Article  CAS  Google Scholar 

  21. Camp CH, Yegnanarayanan S, Eftekhar AA, Adibi A (2011) Label-free flow cytometry using multiplex coherent anti-stokes Raman scattering (MCARS) for the analysis of biological specimens. Opt Lett 36:2309–2311

    Article  Google Scholar 

  22. Bergner G, Chatzipapadopoulos S, Akimov D, Dietzek B, Malsch D, Henkel T, Schlücker S, Popp J (2009) Quantitative CARS microscopic detection of analytes and their isotopomers in a two-channel microfluidic chip. Small 5:2816–2818

    Article  CAS  Google Scholar 

  23. Bergner G, Albert CR, Schiller M, Bringmann G, Schirmeister T, Dietzek B, Niebling S, Schlücker S, Popp J (2011) Quantitative detection of C-deuterated drugs by CARS microscopy and Raman microspectroscopy. Analyst 136:3686–3693

    Article  CAS  Google Scholar 

  24. Åkeson M, Brackmann C, Gustafsson L, Enejder A (2010) Chemical imaging of glucose by CARS microscopy. J Raman Spectrosc 41:1638–1644

    Article  Google Scholar 

  25. Schafer D, Squier JA, van Maarseveen J, Bonn D, Bonn M, Müller M (2008) In situ quantitative measurement of concentration profiles in a microreactor with submicron resolution using multiplex CARS microscopy. J Am Chem Soc 130:11592–11593

    Article  CAS  Google Scholar 

  26. Schafer D, Müller M, Bonn M, Marr DWM, van Maarseveen J, Squier J (2009) Coherent anti-stokes Raman scattering microscopy for quantitative characterization of mixing and flow in microfluidics. Opt Lett 34:211–213

    Article  CAS  Google Scholar 

  27. Oshovsky GV, Rago G, Day JPR, Soudijn ML, Rock W, Parekh SH, Ciancaleoni G, Reek JNH, Bonn M (2013) Coherent anti-stokes Raman scattering microspectroscopic kinetic study of fast hydrogen bond formation in microfluidic devices. Anal Chem 85:8923–8927

    Article  CAS  Google Scholar 

  28. Lotter C, Heiland JJ, Stein V, Klimkait M, Queisser M, Belder D (2016) Evaluation of pressure stable chip-to-tube fittings enabling high-speed chip-hplc with mass spectrometric detection. Anal Chem 88:7481–7486

    Article  CAS  Google Scholar 

  29. Thurmann S, Dittmar A, Belder D (2014) A low pressure on-chip injection strategy for high-performance chip-based chromatography. J Chromatogr A 1340:59–67

    Article  CAS  Google Scholar 

  30. Lotter C, Heiland JJ, Thurmann S, Mauritz L, Belder D (2016) HPLC-MS with glass chips featuring monolithically integrated electrospray emitters of different geometries. Anal Chem 88:2856–2863

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Deutsche Forschungsgemeinschaft and the AIF for funding. The author Josef J. Heiland would like to thank the Studienstiftung des dt. Volkes for the financial support in form of a PhD-scholarship. The authors thank Dr. S. Nagl for his helpful support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlev Belder.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

David Geissler and Josef J. Heiland contributed equally.

Electronic supplementary material

ESM 1

(DOCX 1899 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geissler, D., Heiland, J.J., Lotter, C. et al. Microchip HPLC separations monitored simultaneously by coherent anti-Stokes Raman scattering and fluorescence detection. Microchim Acta 184, 315–321 (2017). https://doi.org/10.1007/s00604-016-2012-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2012-3

Keywords

Navigation