Skip to main content
Log in

Voltammetric myoglobin sensor based on a glassy carbon electrode modified with a composite film consisting of carbon nanotubes and a molecularly imprinted polymerized ionic liquid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The ionic liquid 1-{3-[(2-aminoethyl)amino]propyl}-3-vinylimidazole bromide was synthesized and used to fabricate a molecularly imprinted film for electrochemical sensing of myoglobin (Myo). This film was deposited on a glassy carbon electrode modified with multi-walled carbon nanotubes by using the ionic liquid as the functional monomer, Myo as the template, N,N′-methylenebisacrylamide as the crosslinker, and a redox system containing ammonium persulfate and N,N,N′,N′-tetramethylethylenediamine as the initiator. The sensing performance of the modified electrode was investigated by using the hexacyanoferrate system as an electrochemical redox probe. The results demonstrated that the sensor possesses good selectivity and high sensitivity. The oxidation peak current at the potential of ~0.3 V (vs. SCE) was found linearly related to the myoglobin concentration in the range from 60.0 nM to 6.0 μM, with a 9.7 nM detection limit at an S/N ratio of 3. The sensor was applied to the determination of Myo in spiked serum samples where it showed average recoveries (for n = 5) of 96.5 %.

By using a polymerizable ionic liquid as the functional monomer, a myoglobin imprinted polymer was fabricated on a multi-walled carbon nanotube modified glassy carbon electrode. The sensing performances of the molecularly imprinted sensor towards myoglobin demonstrated good selectivity, sensitivity and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pauling L (1940) A theory of the structure and process of formation of antibodies. J Am Chem Soc 62:2643

    Article  CAS  Google Scholar 

  2. Mosbach K (1994) Molecular imprinting. Trends Biochem Sci 19:9

    Article  CAS  Google Scholar 

  3. Li CY, Zhan GQ, Ma M, Wang ZG (2012) Preparation of parathion imprinted polymer beads and its applications in electrochemical sensing. Colloids Surf B 90:152

    Article  Google Scholar 

  4. Wang YY, Han M, Liu GS, Hou XD, Huang YN, Wu KB, Li CY (2015) Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin. Biosens Bioelectron 74:792

    Article  CAS  Google Scholar 

  5. Pan YH, Shang L, Zhao FQ, Zeng BZ (2015) A novel electrochemical 4-nonyl-phenol sensor based on molecularly imprinted poly (o-phenylenediamine-co-o-toluidine) − nitrogen-doped graphene nanoribbons-ionic liquid composite film. Electrochim Acta 151:423

    Article  CAS  Google Scholar 

  6. Zeng YB, ZhouY ZTS, Shi GY (2014) A novel composite of reduced graphene oxide and molecularly imprinted polymer for electrochemical sensing 4-nitrophenol. Electrochim Acta 130:504

    Article  CAS  Google Scholar 

  7. He HY, Fu GQ, Wang Y, Chai ZH, Jiang YZ, Chen ZL (2010) Imprinting of protein over silica nanoparticles via surface graft copolymerization using low monomer concentration. Biosens Bioelectron 26:760

    Article  CAS  Google Scholar 

  8. Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100:2495

    Article  CAS  Google Scholar 

  9. Chen LX, Xu SF, Li JH (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40:2922

    Article  CAS  Google Scholar 

  10. Mazzotta E, Turco A, Chianella I, Guerreiro A, Piletsky SA, Malitesta C (2016) Solid-phase synthesis of electroactive nanoparticles of molecularly imprinted polymers, A novel platform for indirect electrochemical sensing applications. Sensors Actuators B Chem 229:174

    Article  CAS  Google Scholar 

  11. Li H, Hu X, Zhang YP, Shi SY, Jiang XY, Chen XQ (2015) High-capacity magnetic hollow porous molecularly imprinted polymers for specific extraction of protocatechuic acid. J Chromatogr A 1404:21

    Article  CAS  Google Scholar 

  12. Liu GL, Chen Z, Jiang XY, Feng DQ, Zhao JY, Fan DH, Wang W (2016) In-situ hydrothermal synthesis of molecularly imprinted polymers coated carbon dots for fluorescent detection of bisphenol a. Sensors Actuators B Chem 228:302

    Article  CAS  Google Scholar 

  13. Fosca M, Marina R (2015) Molecularly imprinted polymers for catalysis and synthesis. Adv Biochem Eng Biotechnol 150:107

    Google Scholar 

  14. Wulff G (2002) Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev 102:1

    Article  CAS  Google Scholar 

  15. Wang QL, Chen MM, Zhang HQ, Wen W, Zhang XH, Wang SF (2016) Solid-state electrochemiluminescence sensor based on RuSi nanoparticles combined with molecularly imprinted polymer for the determination of ochratoxin a. Sensors Actuators B Chem 222:264

    Article  CAS  Google Scholar 

  16. Hou J, Zhang HC, Yang Q, Li MZ, Jiang L, Song YL (2015) Hydrophilic-hydrophobic patterned molecularly imprinted photonic crystal sensors for high-sensitive colorimetric detection of tetracycline. Small 11:2738

    Article  CAS  Google Scholar 

  17. Yang GM, Zhao FQ (2015) Electrochemical sensor for dimetridazole based on novel gold nanoparticles@molecularly imprinted polymer. Sensors Actuators B Chem 220:1017

    Article  CAS  Google Scholar 

  18. Kumar D, Prasad BB (2012) Multiwalled carbon nanotubes embedded molecularly imprinted polymer-modified screen printed carbon electrode for the quantitative analysis of C-reactive protein. Sensors Actuators B Chem 171–172:1141

    Article  Google Scholar 

  19. Zhou X, Li WY, He XW, Chen LX, Zhang YK (2007) Recent advances in the study of protein imprinting. Sep Purif Rev 36:257

    Article  CAS  Google Scholar 

  20. Bossi A, Bonini F, Turner AP, Piletsky SA (2007) Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens Bioelectron 22:1131

    Article  CAS  Google Scholar 

  21. Whitcombe MJ, Chianella I, Larcombe L, Piletsky SA, Noble J, Porter R, Horgan A (2011) The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem Soc Rev 40:1547

    Article  CAS  Google Scholar 

  22. Yildirim E, Turan E, Caykara T (2012) Construction of myoglobin imprinted polymer films by grafting from silicon surface. J Mater Chem 22:636

    Article  CAS  Google Scholar 

  23. Jing T, Du HR, Dai Q, Xia HA, Niu JW, Hao QL, Mei SR, Zhou YK (2010) Magnetic molecularly imprinted nanoparticles for recognition of lysozyme. Biosens Bioelectron 26:301

    Article  CAS  Google Scholar 

  24. Bossi AM, Sharma PS, Montana L, Zoccatelli G, Laub O, Levi R (2012) Fingerprint-imprinted polymer: rational selection of peptide epitope templates for the determination of proteins by molecularly imprinted polymers. Anal Chem 84:4036

    Article  CAS  Google Scholar 

  25. Blanco E, Ruso JM, Sabin J, Prieto G, Sarmiento F (2007) Thermal stability of lysozyme and myoglobin in the presence of anionic surfactants. J Therm Anal Calorim 87:211

    Article  CAS  Google Scholar 

  26. Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181:662

    Article  CAS  Google Scholar 

  27. O’Sullivanl S, Arrigan DWM (2012) Electrochemical behaviour of myoglobin at an array of microscopic liquid-liquid interfaces. Electrochim Acta 77:71

    Article  Google Scholar 

  28. Suprun E, Bulko T, Lisitsa A, Gnedenko O, Ivanov A, Shumyantseva V, Archakov A (2010) Electrochemical nanobiosensor for express diagnosis of acute myocardial infarction in undiluted plasma. Biosens Bioelectron 25:1694

    Article  CAS  Google Scholar 

  29. McDonnell B, Hearty S, Leonard P, O’Kennedy R (2009) Cardiac biomarkers and the case for point-of-care testing. Clin Biochem 42:549

    Article  CAS  Google Scholar 

  30. Melanson SF, Tanasijevic MJ (2005) Laboratory diagnosis of acute myocardial injury. Cardiovasc Pathol 14:156

    Article  CAS  Google Scholar 

  31. Vilaivan T (2006) A rate enhancement of tert-butoxycarbonylation of aromatic amines with Boc2O in alcoholic solvents. Tetrahedron Lett 47:6739

    Article  CAS  Google Scholar 

  32. Chen XM, Ren TQ, Ma M, Wang ZG, Zhan GQ, Li CY (2013) Voltammetric sensing of bisphenol a based on a single-walled carbonnanotubes/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionicliquid} composite film modified electrode. Electrochim Acta 111:49

    Article  CAS  Google Scholar 

  33. Gurban AM, Rotariu L, Baibarac M, Balto I, Bala C (2011) Sensitive detection ofendocrine disrupters using ionic liquid-single walled carbon nanotubes modified screen-printed based biosensors. Talanta 85:2007

    Article  CAS  Google Scholar 

  34. Osman B, Uzun L, Beşirli N, Denizli A (2013) Microcontact imprinted surface plasmon resonance sensor for myoglobin detection. Mater Sci Eng C 33:3609

    Article  CAS  Google Scholar 

  35. Moreira FTC, Sharma S, Dutra RAF, Noronha JPC, Cass AE, Sales MGF (2013) Smart plastic antibody material (SPAM) tailored on disposable screen printed electrodes for protein recognition: application to myoglobin detection. Biosens Bioelectron 45:237

    Article  CAS  Google Scholar 

  36. Moreira FTC, Dutra RAF, Noronha JPC, Sales MGF (2013) Electrochemical biosensor based on biomimetic material for myoglobin detection. Electrochim Acta 107:481

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No.21275166 and 21675175), the Natural Science Foundation of Hubei Province, China (No. 2015CFA092), China Scholarship Council (No. 201307780006). The first two authors contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunya Li.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

Supplementary data associated with this article can be found, in the online version.

ESM 1

(DOC 721 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Han, M., Ye, X. et al. Voltammetric myoglobin sensor based on a glassy carbon electrode modified with a composite film consisting of carbon nanotubes and a molecularly imprinted polymerized ionic liquid. Microchim Acta 184, 195–202 (2017). https://doi.org/10.1007/s00604-016-2005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2005-2

Keywords

Navigation