Skip to main content
Log in

Ultrasensitive determination of 2,4,6-trinitrotoluene by exploiting the strongly enhanced electrochemiluminescence of an assembly between CdSe and graphene quantum dots and its quenching by TNT

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an electrochemiluminescence (ECL) assay for the determination of 2,4,6-trinitrotoluene (TNT) in soil. It is based on the finding that graphene quantum dots (GQDs) strongly enhance the ECL of CdSe quantum dots (CdSe QDs), and ECL is strongly quenched by TNT. In order to assemble the GQDs and CdSe QDs, the latter were functionalized with carboxy groups and then coupled to amino-functionalized GQDs (afGQDs). The resulting CdSe-GQDs conjugation was placed as a thin film on a glassy carbon electrode (GCE). The modified electrode displays an about 8-fold enhanced ECL intensity compared to an GCE with CdSe QDs only, and the onset potential of the ECL reaction is positively shifted by 140 mV. In the presence of TNT, the ECL is quenched due to the formation of the TNT-amine complex. The decrease in ECL intensity is related to the logarithm of the TNT concentration in the range from 0.01 to 100 ppb, with a detection limit as low as 3 ppt. The results of TNT assays in (spiked) soil samples showed recoveries between 99.2 and 105.0 % and relative standard deviations between 3.0 and 8.2 %. This strategy offers a new perspective for developing ECL assays based on the use of semiconductor nanoparticles and graphene-based nanomaterials.

A electrochemiluminescence (ECL) assay was developed for the detection of 2,4,6-trinitrotoluene (TNT). The method utilizes a combination of CdSe and graphene quantum dots (GQDs), and a glassy carbon electrode modified with poly(diallyldimethylammonium chloride)-protected graphene. The assay is simple and displays acceptable reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McKenzie-Coe A, DeBord JD, Ridgeway M, Park M, Eicemanc G, Fernandez-Lim F (2015) Lifetimes and stabilities of familiar explosive molecular complexes during ion mobility measurements. Analyst 140:5692–5699

    Article  CAS  Google Scholar 

  2. Makinen M, Nousiainen M, Sillanpaa M (2011) Ion spectrometric detection technologies for ultra-traces of explosives: a review. Mass Spectrom Rev 30:940–973

    Google Scholar 

  3. Ifa DR, Manicke NE, Dill AL, Cooks G (2008) Latent fingerprint chemical imaging by mass spectrometry. Science 321:805

    Article  CAS  Google Scholar 

  4. Jamil AKM, Izake EL, Sivanesan A, Fredericks PM (2015) Rapid detection of TNT in aqueous media by selective label free surface enhanced Raman spectroscopy. Talanta 134:732–738

    Article  CAS  Google Scholar 

  5. Bai M, Huang SN, Xu SY, Hu GF, Wang LY (2015) Fluorescent nanosensors via photoinduced polymerization of hydrophobic inorganic quantum dots for the sensitive and selective detection of nitroaromatics. Anal Chem 87:2383–2388

    Article  CAS  Google Scholar 

  6. Zhen L, Ford N, Gale DK, Roesijadi G, Rorrer GL (2016) Photoluminescence detection of 2,4,6-trinitrotoluene (TNT) binding on diatom frustule biosilica functionalized with an anti-TNT monoclonal antibody fragment. Biosens Bioelectron 79:742–748

    Article  CAS  Google Scholar 

  7. Parajuli S, Jing XH, Miao WJ (2015) Electrogenerated chemiluminescence (ECL) quenching of the Ru(bpy)3 2+/TPrA system by the explosive TNT. Electrochim Acta 180:196–201

    Article  CAS  Google Scholar 

  8. Ho MY, Souza ND’, Migliorato P (2012) Electrochemical aptamer-based sandwich assays for the detection of explosives. Anal Chem 84:4245–4247

  9. Xiao CH, Rehman A, Zeng XQ (2012) Dynamics of redox processes in ionic liquids and their interplay for discriminative electrochemical sensing. Anal Chem 84:1416–1424

    Article  CAS  Google Scholar 

  10. Pittman TL, Thomson B, Miao WJ (2009) Ultrasensitive detection of TNT in soil, water, using enhanced electrogenerated chemiluminescence. Anal Chim Acta 632:197–202

    Article  CAS  Google Scholar 

  11. Yu YQ, Cao Q, Zhou M, Cui H (2013) A novel homogeneous label-free aptasensor for 2,4,6-trinitrotoluene detection based on an assembly strategy of electrochemiluminescent graphene oxide with gold nanoparticles and aptamer. Biosens Bioelectron 43:137–142

    Article  CAS  Google Scholar 

  12. Tan J, Xu LR, Li T, Su B, Wu JM (2014) Image-contrast technology based on the electrochemiluminescence of porous silicon and its application in fingerprint visualization. Angew Chem Int Ed 53:9822–9826

    Article  CAS  Google Scholar 

  13. Zhang J, Cai FD, Deng AP, Li JG (2013) CdSe quantum dots based electrochemiluminescence immunosensor with simple structure for ultrasensitive detection of salbutamol. Electroanalysis 26:873–881

    Article  Google Scholar 

  14. Yao X, Yan PP, Zhang K, Li JG (2012) Preparation of water-soluble CdSe quantum dots and its application for nitrite detection in the anodic electrochemiluminescence. Luminescence 28:551–556

    Article  Google Scholar 

  15. Li QL, Bao N, Ding SN (2014) Electrochemiluminescence sensor for phosphate ions based on europium(III)-modulated CdSe quantum dots. Electroanalysis 26:2710–2715

    Article  CAS  Google Scholar 

  16. Jiang H, Wang HP, Wang XM (2010) Potential-triggered adsorption of CdSe nanoparticles on glassy carbon electrode for generation of electrochemiluminescence. Electrochim Acta 56:553–558

    Article  CAS  Google Scholar 

  17. Myung N, Ding ZF, Bard AJ (2002) Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett 2:1315–1319

    Article  CAS  Google Scholar 

  18. Jie GF, Zhang JJ, Wang DC, Cheng C, Chen HY, Zhu JJ (2008) Electrochemiluminescence immunosensor based on CdSe nanocomposites. Anal Chem 80:4033–4039

    Article  CAS  Google Scholar 

  19. Huang TY, Meng QM, Jie GF (2015) Silver nanowires-based signal amplification for CdSe quantum dots electrochemiluminescence immunoassay. Biosens Bioelectron 66:84–88

    Article  CAS  Google Scholar 

  20. Ke R, Zhang XM, Wang L, Zhang CY, Zhang SY, Niu HL, Mao CJ, Song JM, Jin BK, Tian YP (2015) Enhanced electrochemiluminescence of CdSe quantum dots coupled with MoS2-chitosan nanosheets. J Solid State Electrochem 19:1633–1641

    Article  CAS  Google Scholar 

  21. Zou G, Ju H, Ding W, Chen H (2005) Electrogenerated chemiluminescence of CdSe hollow spherical assemblies in aqueous system by immobilization in carbon paste. J Electroanal Chem 579:175–180

    Article  CAS  Google Scholar 

  22. Jie GF, Liu P, Zhang SS (2010) Highly enhanced electrochemiluminescence of novel gold/silica/CdSe-CdS nanostructures for ultrasensitive immunoassay of protein tumor markerw. Chem Commun 46:1323–1325

    Article  CAS  Google Scholar 

  23. Wang T, Zhang SY, Mao CG, Song JM, Niu HL, Jin BK, Tian YP (2012) Enhanced electrochemiluminescence of CdSe quantum dots composited with graphene oxide and chitosan for sensitive sensor. Biosens Bioelectron 31:369–375

    Article  CAS  Google Scholar 

  24. Jie GF, Li LL, Chen C, Xuan J, Zhu JJ (2009) Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay. Biosens Bioelectron 24:3352–3358

    Article  CAS  Google Scholar 

  25. Xie R, Wang ZF, Zhou W, Liu YT, Fan LZ, Li YC, Li XH (2016) Signal-on fluorescent sensor based on GQDs-MnO2 composite for glutathione. Anal Methods 8:4001–4016

    Article  CAS  Google Scholar 

  26. Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, Jiang LP, Zhu JJ (2012) A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater 22:2971–2979

    Article  CAS  Google Scholar 

  27. Liu Q, Wang K, Huan J, Zhu GB, Qian J, Mao HP, Cai JR (2014) Graphene quantum dots enhanced electrochemiluminescence of cadmium sulfide nanocrystals for ultrasensitive determination of pentachlorophenol. Analys 139:2912–2918

    Article  CAS  Google Scholar 

  28. Yan YT, Liu Q, Dong XY, Hao N, Chen S, You TY, Mao HP, Wang K (2016) Copper(I) oxide nanospheres decorated with graphene quantum dots display improved electrocatalytic activity for enhanced luminol electrochemiluminescence. Microchim Acta 183:1591–1599

    Article  CAS  Google Scholar 

  29. Li LL, Liu KP, Yang GH, Wang CM, Zhang JR, Zhu JJ (2011) Fabrication of graphene-quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing. Adv Funct Mater 21:869–878

    Article  CAS  Google Scholar 

  30. Qi WJ, Xu M, Pang L, Liu ZY, Zhang W, Majeed S, Xu GB (2014) Electrochemiluminescence detection of TNT by resonance energy transfer through the formation of a TNT-amine complex. Chem Eur J 20:4829–4835

    Article  CAS  Google Scholar 

  31. Ding SN, Jin Y, Chen X, Bao N (2015) Tunable electrochemiluminescence of CdSe@ZnSe quantum dots by adjusting ZnSe shell thickness. Electrochem Commun 55:30–33

    Article  CAS  Google Scholar 

  32. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge LH, Song L, Alemany LB, Zhan XB, Gao GH, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu JJ, Ajayan PM (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849

    Article  CAS  Google Scholar 

  33. Peng J, Wang S, Zhang PH, Jiang LP, Shi JJ, Zhu JJ (2013) Fabrication of graphene quantum dots and hexagonal boron nitride nanocomposites for fluorescent cell imaging. J Biomed Nanotechnol 9:1679–1685

    Article  CAS  Google Scholar 

  34. Sun HJ, Gao N, Wu L, Ren JS, Wei WL, Qu XG (2013) Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions. Chem Eur J 19:13362–13368

    Article  CAS  Google Scholar 

  35. Zhuo Y, Gui GF, Chai YQ, Liao N, Xiao K, Yuan R (2014) Sandwich-format electrochemiluminescence assays for tumor marker based on PAMAM dendrimer-L-cysteine-hollow gold nanosphere nanocomposites. Biosens Bioelectron 53:459–464

    Article  CAS  Google Scholar 

  36. Zhang J, Wang MB, Yao X, Deng AP, Li JG (2015) Highly sensitive electroluminescence immunoassay for Hg(II) ions based on the use of CdSe quantum dots, the methylmercury-6-mercaptonicotinic acid-ovalbumin conjugate, and a specific monoclonal antibody. Microchim Acta 182:469–477

    Article  CAS  Google Scholar 

  37. Jie GF, Chen K, Wang XC, Lu ZK (2016) Dual-stabilizer-capped CdSe quantum dots for “off-on” electrochemiluminescence biosensing of thrombin by target-triggered multiple amplification. RSC Adv 6:2065–2071

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the support of the National Natural Science Foundation of China (21505001), Foundation of Provincial Natural Science Research Project of Anhui Colleges (KJ2014A059) and State Key Laboratory of Analytical Chemistry for Life Science (SKLACLS1418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jun Shi.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 7.49 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, JJ., Meng, LX. & Yang, P. Ultrasensitive determination of 2,4,6-trinitrotoluene by exploiting the strongly enhanced electrochemiluminescence of an assembly between CdSe and graphene quantum dots and its quenching by TNT. Microchim Acta 184, 73–80 (2017). https://doi.org/10.1007/s00604-016-1993-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1993-2

Keywords

Navigation