Skip to main content
Log in

Aptamer based fluorometric acetamiprid assay using three kinds of nanoparticles for powerful signal amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an aptamer-based fluorometric assay for the insecticide acetamiprid. It is based on target-induced release of the fluorescein-labeled complementary strand of the aptamer (CS) from the aptamer/CS conjugate (dsDNA). Three kinds of nanoparticles with opposite effects on the fluorophore (FAM) were used. These include gold nanoparticles (AuNPs), single-walled carbon nanotubes (SWNTs) and silica nanoparticles (SiNPs) coated with streptavidin. In the presence of acetamiprid, FAM-labeled CS is released from the dsDNA-modified SNP-streptavidin complex and accumulates in the supernatant (phase I) after centrifugation. Fluorescence intensity decreases on addition of the supernatant to the SWNTs and AuNPs because they act as quenchers (phase II). In the absence of acetamiprid, the dsDNA-modified SiNP-streptavidin complex remains intact and no labeled CS is present in the supernatant containing the AuNPs and SWNTs. So, the relative fluorescence intensity is quite low. The assay is highly selective for acetamiprid and has a limit of detection (LOD) as low as 127 pM. The method was successfully applied to the determination of acetamiprid in spiked serum and water where it gave LODs of 198 and 130 pM, respectively.

In the absence of acetamiprid, the dsDNA-modified silica nanoparticle (SiNP)-streptavidin conjugate remains intact, leading to a very weak relative fluorescence intensity. In the presence of target, the dsDNA-modified SiNP-streptavidin complex is disassembled and FAM-labeled CS is released from the aptamer (Apt), resulting in a very strong relative fluorescence intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shi H, Zhao G, Liu M, Fan L, Cao T (2013) Aptamer-based colorimetric sensing of acetamiprid in soil samples: sensitivity, selectivity and mechanism. J Hazard Mater 260:754–761. doi:10.1016/j.jhazmat.2013.06.031

    Article  CAS  Google Scholar 

  2. Fan L, Zhao G, Shi H, Liu M, Li Z (2013) A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid. Biosens Bioelectron 43(1):12–18. doi:10.1016/j.bios.2012.11.033

    Article  CAS  Google Scholar 

  3. Weerathunge P, Ramanathan R, Shukla R, Sharma TK, Bansal V (2014) Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal Chem 86(24):11937–11941. doi:10.1021/ac5028726

    Article  CAS  Google Scholar 

  4. Jiang D, Du X, Liu Q, Zhou L, Dai L, Qian J, Wang K (2015) Silver nanoparticles anchored on nitrogen-doped graphene as a novel electrochemical biosensing platform with enhanced sensitivity for aptamer-based pesticide assay. Analyst 140(18):6404–6411. doi:10.1039/c5an01084e

    Article  CAS  Google Scholar 

  5. Li H, Qiao Y, Li J, Fang H, Fan D, Wang W (2016) A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles. Biosens Bioelectron 77:378–384. doi:10.1016/j.bios.2015.09.066

    Article  CAS  Google Scholar 

  6. Fei A, Liu Q, Huan J, Qian J, Dong X, Qiu B, Mao H, Wang K (2015) Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens Bioelectron 70:122–129. doi:10.1016/j.bios.2015.03.028

    Article  CAS  Google Scholar 

  7. Yang Z, Qian J, Yang X, Jiang D, Du X, Wang K, Mao H (2014) A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide. Biosens Bioelectron 65:39–46. doi:10.1016/j.bios.2014.10.004

    Article  Google Scholar 

  8. Zhao H, Gao S, Liu M, Chang Y, Fan X, Quan X (2013) Fluorescent assay for oxytetracycline based on a long-chain aptamer assembled onto reduced graphene oxide. Microchim Acta 180(9):829–835. doi:10.1007/s00604-013-1006-7

    Article  CAS  Google Scholar 

  9. Huo Y, Qi L, Lv XJ, Lai T, Zhang J, Zhang ZQ (2016) A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles. Biosens Bioelectron 78:315–320. doi:10.1016/j.bios.2015.11.043

    Article  CAS  Google Scholar 

  10. Reinemann C, Freiin von Fritsch U, Rudolph S, Strehlitz B (2016) Generation and characterization of quinolone-specific DNA aptamers suitable for water monitoring. Biosens Bioelectron 77:1039–1047. doi:10.1016/j.bios.2015.10.069

    Article  CAS  Google Scholar 

  11. Yang F, Wang P, Wang R, Zhou Y, Su X, He Y, Shi L, Yao D (2016) Label free electrochemical aptasensor for ultrasensitive detection of ractopamine. Biosens Bioelectron 77:347–352. doi:10.1016/j.bios.2015.09.050

    Article  CAS  Google Scholar 

  12. Wang B, Chen Y, Wu Y, Weng B, Liu Y, Lu Z, Li CM, Yu C (2016) Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosens Bioelectron 78:23–30. doi:10.1016/j.bios.2015.11.015

    Article  CAS  Google Scholar 

  13. Lu Z, Chen X, Wang Y, Zheng X, Li CM (2015) Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchim Acta 182(3):571–578. doi:10.1007/s00604-014-1360-0

    Article  CAS  Google Scholar 

  14. Mohammad Danesh N, Ramezani M, Sarreshtehdar Emrani A, Abnous K, Taghdisi SM (2016) A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin. Biosensors & bioelectronics 75:123–128. doi:10.1016/j.bios.2015.08.017

    Article  CAS  Google Scholar 

  15. Ramezani M, Mohammad Danesh N, Lavaee P, Abnous K, Mohammad Taghdisi S (2015) A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens Bioelectron 70:181–187. doi:10.1016/j.bios.2015.03.040

    Article  CAS  Google Scholar 

  16. Emrani AS, Danesh NM, Lavaee P, Ramezani M, Abnous K, Taghdisi SM (2016) Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chem 190:115–121. doi:10.1016/j.foodchem.2015.05.079

    Article  CAS  Google Scholar 

  17. Zhao F, Xie Q, Xu M, Wang S, Zhou J, Liu F (2015) RNA aptamer based electrochemical biosensor for sensitive and selective detection of cAMP. Biosens Bioelectron 66:238–243. doi:10.1016/j.bios.2014.11.024

    Article  CAS  Google Scholar 

  18. Jain A, Homayoun A, Bannister CW, Yum K (2015) Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine. Biotechnol J 10(3):447–459. doi:10.1002/biot.201400168

    Article  CAS  Google Scholar 

  19. Taghdisi SM, Danesh NM, Emrani AS, Ramezani M, Abnous K (2015) A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine. Biosens Bioelectron 73:245–250. doi:10.1016/j.bios.2015.05.065

    Article  CAS  Google Scholar 

  20. Ajori S, Ansari R (2015) Vibrational characteristics of diethyltoluenediamines (DETDA) functionalized carbon nanotubes using molecular dynamics simulations. Phys B Condens Matter 459:58–61. doi:10.1016/j.physb.2014.11.101

    Article  CAS  Google Scholar 

  21. Miller TS, Sansuk S, SP E, SCS L, JV M, PR U (2015) Pt nanoparticle modified single walled carbon nanotube network electrodes for electrocatalysis: control of the specific surface area over three orders of magnitude. Catal Today 244:136–145. doi:10.1016/j.cattod.2014.06.022

    Article  CAS  Google Scholar 

  22. Hu K, Huang Y, wang S, Zhao S (2014) A carbon nanotubes based fluorescent aptasensor for highly sensitive detection of adenosine deaminase activity and inhibitor screening in natural extracts. J Pharm Biomed Anal 95:164–168. doi:10.1016/j.jpba.2014.02.027

    Article  CAS  Google Scholar 

  23. Benson J, Fung CM, Lloyd JS, Deganello D, Smith NA, Teng KS (2015) Direct patterning of gold nanoparticles using flexographic printing for biosensing applications. Nanoscale Res Lett 10(1):1–8. doi:10.1186/s11671-015-0835-1

    Article  CAS  Google Scholar 

  24. Ma X, Chen M (2015) Electrochemical sensor based on graphene doped gold nanoparticles modified electrode for detection of diethylstilboestrol. Sensors Actuators B Chem 215:445–450. doi:10.1016/j.snb.2015.04.016

    Article  CAS  Google Scholar 

  25. Wei L, Wang X, Li C, Li X, Yin Y, Li G (2015) Colorimetric assay for protein detection based on "nano-pumpkin" induced aggregation of peptide-decorated gold nanoparticles. Biosens Bioelectron 71:348–352. doi:10.1016/j.bios.2015.04.072

    Article  CAS  Google Scholar 

  26. Emrani AS, Taghdisi SM, Danesh NM, Jalalian SH, Ramezani M, Abnous K (2015) A novel fluorescent aptasensor for selective and sensitive detection of digoxin based on silica nanoparticles. Anal Methods 7(9):3814–3818. doi:10.1039/c5ay00622h

    Article  CAS  Google Scholar 

  27. Li X, Kao FJ, Chuang CC, He S (2010) Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and twophoton excitation. Opt Express 18(11):11335–11346. doi:10.1364/oe.18.011335

    Article  CAS  Google Scholar 

  28. Yue Q, Shen T, Wang L, Xu S, Li H, Xue Q, Zhang Y, Gu X, Zhang S, Liu J (2014) A convenient sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization. Biosens Bioelectron 56:231–236

    Article  CAS  Google Scholar 

  29. Emrani AS, Danesh NM, Ramezani M, Taghdisi SM, Abnous K (2016) A novel fluorescent aptasensor based on hairpin structure of complementary strand of aptamer and nanoparticles as a signal amplification approach for ultrasensitive detection of cocaine. Biosens Bioelectron 79:288–293. doi:10.1016/j.bios.2015.12.025

    Article  CAS  Google Scholar 

  30. Pang Y, Rong Z, Wang J, Xiao R, Wang S (2015) A fluorescent aptasensor for H5N1 influenza virus detection based-on the core-shell nanoparticles metal-enhanced fluorescence (MEF). Biosens Bioelectron 66:527–532. doi:10.1016/j.bios.2014.10.052

    Article  CAS  Google Scholar 

  31. He J, Liu Y, Fan M, Liu X (2011) Isolation and identification of the DNA aptamer target to acetamiprid. J Agric Food Chem 59(5):1582–1586. doi:10.1021/jf104189g

    Article  CAS  Google Scholar 

  32. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120(9):1959–1964

    Article  CAS  Google Scholar 

  33. Song Q, Peng M, Wang L, He D, Ouyang J (2016) A fluorescent aptasensor for amplified label-free detection of adenosine triphosphate based on core–shell Ag@SiO2 nanoparticles. Biosens Bioelectron 77:237–241. doi:10.1016/j.bios.2015.09.008

    Article  CAS  Google Scholar 

  34. Wu S, Zhang H, Shi Z, Duan N, Fang C, Dai S, Wang Z (2015) Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control 50:597–604

    Article  CAS  Google Scholar 

  35. Yang C, Wang Q, Xiang Y, Yuan R, Chai Y (2014) Target-induced strand release and thionine-decorated gold nanoparticle amplification labels for sensitive electrochemical aptamer-based sensing of small molecules. Sensors Actuators B Chem 197:149–154

    Article  CAS  Google Scholar 

  36. Ferrer I, Thurman EM, Fernández-Alba AR (2005) Quantitation and accurate mass analysis of pesticides in vegetables by LC/TOF-MS. Anal Chem 77(9):2818–2825. doi:10.1021/ac048458x

    Article  CAS  Google Scholar 

  37. Zhang X, Mobley N, Zhang J, Zheng X, Lu L, Ragin O, Smith CJ (2010) Analysis of agricultural residues on tea using d-SPE sample preparation with GC-NCI-MS and UHPLC-MS/MS. J Agric Food Chem 58(22):11553–11560. doi:10.1021/jf102476m

    Article  CAS  Google Scholar 

  38. Zhang B, Pan X, Venne L, Dunnum S, McMurry ST, Cobb GP, Anderson TA (2008) Development of a method for the determination of 9 currently used cotton pesticides by gas chromatography with electron capture detection. Talanta 75(4):1055–1060. doi:10.1016/j.talanta.2008.01.032

    Article  CAS  Google Scholar 

  39. Guo J, Li Y, Wang L, Xu J, Huang Y, Luo Y, Shen F, Sun C, Meng R (2016) Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Anal Bioanal Chem 408(2):557–566. doi:10.1007/s00216-015-9132-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this study was provided by Mashhad University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Taghdisi.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Khalil Abnous and Noor Mohammad Danesh contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abnous, K., Danesh, N.M., Ramezani, M. et al. Aptamer based fluorometric acetamiprid assay using three kinds of nanoparticles for powerful signal amplification. Microchim Acta 184, 81–90 (2017). https://doi.org/10.1007/s00604-016-1992-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1992-3

Keywords

Navigation