Skip to main content
Log in

A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This article describes a microfluidic SERS chip-based rapid and high-throughput method for the determination of chemical and biological analytes, specifically of melamine. The chip consists of an indium tin oxide (ITO) glass plate modified with silver-gold nanocomposites (Ag-Au NCs) and a polydimethylsiloxane (PDMS) cover plate. The chip has five parallel microfluidic channels. The ITO glass provides electrical conductivity and has a smooth surface which makes it well suited for the deposition of the Ag-Au NC by electrodeposition and galvanic replacement. This technique allows good control of the morphology and composition of the composite. Under optimized conditions, the microfluidic SERS chip provides excellent sensitivity for 4-mercaptobenzoic acid (4-MBA). The detection limit is 0.1 nM and the SERS enhancement factor is 2.7×1010. The chip exhibits good stability over time and good reproducibility, with a RSD of 8.6 % between the 5 micro-channels. The chip was successfully applied to the determination of melamine in milk with a 10 nM detection limit and an analytical range from 10 nM to 0.1 mM. It is demonstrated that the microfluidic SERS chip developed here shows great promise for use in biochemical assays.

A microfluidic SERS chip employing gold nanocomposites (Ag-Au NCs) as SERS-active substrate was fabricated. Its SERS enhancement factor is 2.7⋅1010. The chip was applied to determinate melamine in milk with detection limit of 10 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cui M, Zhao Y, Wang C, Song Q (2016) Synthesis of 2.5 nm colloidal iridium nanoparticles with strong surface enhanced Raman scattering activity. Microchim Acta 183(6):2047–2053

    Article  CAS  Google Scholar 

  2. Qu LL, Geng YY, Bao ZN, Riaz S, Li H (2016) Silver nanoparticles on cotton swabs for improved surface-enhanced Raman scattering, and its application to the detection of carbaryl. Microchim Acta 183(4):1307–1313

    Article  CAS  Google Scholar 

  3. Alula MT, Yang J (2015) Photochemical decoration of gold nanoparticles on polymer stabilized magnetic microspheres for determination of adenine by surface-enhanced Raman spectroscopy. Microchim Acta 182(5–6):1017–1024

    Article  CAS  Google Scholar 

  4. Ma P, Liang F, Wang D, Yang Q et al (2015) Selective determination of o-phenylenediamine by surface-enhanced Raman spectroscopy using silver nanoparticles decorated with α-cyclodextrin. Microchim Acta 182(1–2):167–174

    Article  CAS  Google Scholar 

  5. Mao H, Wu W, She D, Sun G, Lv P, Xu J (2014) Microfluidic surface-enhanced Raman scattering sensors based on nanopillar forests realized by an oxygen-plasma-stripping-of-photoresist technique. Small 10(1):127–134. doi:10.1002/smll.201300036

    Article  CAS  Google Scholar 

  6. Lin CC, Chang CW (2014) AuNPs@mesoSiO2 composites for SERS detection of DTNB molecule. Biosens Bioelectron 51:297–303. doi:10.1016/j.bios.2013.07.065

    Article  CAS  Google Scholar 

  7. Wang S, Liu C, Wang H, Chen G, Cong M, Song W, Jia Q, Xu S, Xu W (2014) A surface-enhanced Raman scattering optrode prepared by in situ photoinduced reactions and its application for highly sensitive on-chip detection. ACS Appl Mater Interfaces 6(14):11706–11713. doi:10.1021/am503881h

    Article  CAS  Google Scholar 

  8. Anne Marz TH, Cialla D, Schmitta M (2011) Droplet formation via flow-through microdevices in Raman and surface enhanced Raman spectroscopy—concepts and applications. Lab Chip 11:3567–3726

    Article  Google Scholar 

  9. Fan M, Wang P, Escobedo C, Sinton D, Brolo AG (2012) Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue a and oxazine 720. Lab Chip 12(8):1554–1560. doi:10.1039/c2lc20648j

    Article  CAS  Google Scholar 

  10. Lee H, Xu L, Koh D, Nyayapathi N, Oh KW (2014) Various on-chip sensors with microfluidics for biological applications. Sensors 14(9):17008–17036. doi:10.3390/s140917008

    Article  CAS  Google Scholar 

  11. Lim C, Hong J, Chung BG, deMello AJ, Choo J (2010) Optofluidic platforms based on surface-enhanced Raman scattering. Analyst 135(5):837–844. doi:10.1039/b919584j

    Article  CAS  Google Scholar 

  12. Q-l L, B-w L, Wang Y-q (2013) Surface-enhanced Raman scattering microfluidic sensor. RSC Adv 3(32):13015–13026. doi:10.1039/c3ra40610e

    Article  Google Scholar 

  13. Huang J-A, Zhang Y-L, Ding H, Sun H-B (2015) SERS-enabled lab-on-a-chip systems. Advanced Optical Materials 3(5):618–633. doi:10.1002/adom.201400534

    Article  CAS  Google Scholar 

  14. Leem J, Kang HW, Ko SH, Sung HJ (2014) Controllable Ag nanostructure patterning in a microfluidic channel for real-time SERS systems. Nanoscale 6(5):2895–2901. doi:10.1039/c3nr04829b

    Article  CAS  Google Scholar 

  15. Parisi J, Liu Y, Su L, Lei Y (2013) In situ synthesis of vertical 3-D copper-core/carbon-sheath nanowalls in microfluidic devices. RSC Adv 3(5):1388–1396. doi:10.1039/c2ra22183g

    Article  CAS  Google Scholar 

  16. Parisi J, Su L, Lei Y (2013) In situ synthesis of silver nanoparticle decorated vertical nanowalls in a microfluidic device for ultrasensitive in-channel SERS sensing. Lab Chip 13(8):1501–1508. doi:10.1039/c3lc41249k

    Article  CAS  Google Scholar 

  17. Meier TA, Poehler E, Kemper F, Pabst O, Jahnke HG, Beckert E, Robitzki A, Belder D (2015) Fast electrically assisted regeneration of on-chip SERS substrates. Lab Chip 15(14):2923–2927. doi:10.1039/c5lc00397k

    Article  CAS  Google Scholar 

  18. Ming Li FZ, Zeng J, Qi J, Lu J, Shih W-C (2014) Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection. J Biomed Opt 19:111611–111618. doi:10.1117/1

    Article  Google Scholar 

  19. Chen G, Wang Y, Wang H, Cong M, Chen L, Yang Y, Geng Y, Li H, Xu S, Xu W (2014) A highly sensitive microfluidics system for multiplexed surface-enhanced Raman scattering (SERS) detection based on Ag nanodot arrays. RSC Adv 4(97):54434–54440. doi:10.1039/c4ra09251a

    Article  CAS  Google Scholar 

  20. Xu B-B, Zhang R, Liu X-Q, Wang H, Zhang Y-L, Jiang H-B, Wang L, Ma Z-C, Ku J-F, Xiao F-S, Sun H-B (2012) On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoring. Chem Commun 48(11):1680–1682. doi:10.1039/c2cc16612g

    Article  CAS  Google Scholar 

  21. Xu B-B, Ma Z-C, Wang L, Zhang R, Niu L-G, Yang Z, Zhang Y-L, Zheng W-H, Zhao B, Xu Y, Chen Q-D, Xia H, Sun H-B (2011) Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels. Lab Chip 11(19):3347–3351. doi:10.1039/c1lc20397e

    Article  CAS  Google Scholar 

  22. Liu A, Xu T, Tang J, Wu H, Zhao T, Tang W (2014) Sandwich-structured Ag/graphene/Au hybrid for surface-enhanced Raman scattering. Electrochim Acta 119:43–48. doi:10.1016/j.electacta.2013.12.036

    Article  CAS  Google Scholar 

  23. Yin HJ, Chen ZY, Zhao YM, Lv MY, Shi CA, Wu ZL, Zhang X, Liu L, Wang ML, Xu HJ (2015) Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate. Sci Rep 5:14502. doi:10.1038/srep14502

    Article  Google Scholar 

  24. Pan Y, Guo X, Zhu J et al (2015) A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides. Microchim Acta 182:1775

    Article  CAS  Google Scholar 

  25. Liu Y, Zhou J, Wang B, Jiang T, Ho HP, Petti L, Mormile P (2015) Au@Ag core-shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance. Phys Chem Chem Phys 17(10):6819–6826. doi:10.1039/c4cp05642f

    Article  CAS  Google Scholar 

  26. Garcia-Leis A, Torreggiani A, Garcia-Ramos JV, Sanchez-Cortes S (2015) Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity. Nanoscale 7(32):13629–13637. doi:10.1039/c5nr02819a

    Article  CAS  Google Scholar 

  27. Guo P, Sikdar D, Huang X, Si KJ, Xiong W, Gong S, Yap LW, Premaratne M, Cheng W (2015) Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement. Nanoscale 7(7):2862–2868. doi:10.1039/c4nr06429a

    Article  CAS  Google Scholar 

  28. Lai W, Zhou J, Jia Z, Petti L, Mormile P (2015) Ag@Au hexagonal nanorings: synthesis, mechanistic analysis and structure-dependent optical characteristics. J Mater Chem C 3(37):9726–9733. doi:10.1039/c5tc02017d

    Article  CAS  Google Scholar 

  29. Oh YJ, Jeong KH (2014) Optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels. Lab Chip 14(5):865–868. doi:10.1039/c3lc51257f

    Article  CAS  Google Scholar 

  30. Wang R, Xu Y, Wang C, Zhao H, Wang R, Liao X, Chen L, Chen G (2015) Fabrication of ITO-rGO/Ag NPs nanocomposite by two-step chronoamperometry electrodeposition and its characterization as SERS substrate. Appl Surf Sci 349:805–810. doi:10.1016/j.apsusc.2015.05.067

    Article  CAS  Google Scholar 

  31. Huang D, Hu T, Chen N, Zhang W, Di J (2014) Development of silver/gold nanocages onto indium tin oxide glass as a reagentless plasmonic mercury sensor. Anal Chim Acta 825:51–56. doi:10.1016/j.aca.2014.03.037

    Article  CAS  Google Scholar 

  32. Zhang M, Cao Z, Yobas L (2013) Microchannel plate (MCP) functionalized with Ag nanorods as a high-porosity stable SERS-active membrane. Sensors Actuators B Chem 184:235–242. doi:10.1016/j.snb.2013.04.091

    Article  CAS  Google Scholar 

  33. Li J-M, Yang Y, Qin D (2014) Hollow nanocubes made of Ag–Au alloys for SERS detection with sensitivity of 10 − 8 M for melamine. J Mater Chem C 2(46):9934–9940. doi:10.1039/c4tc02004a

    Article  CAS  Google Scholar 

  34. Guo Z, Cheng Z, Li R, Chen L, Lv H, Zhao B, Choo J (2014) One-step detection of melamine in milk by hollow gold chip based on surface-enhanced Raman scattering. Talanta 122:80–84. doi:10.1016/j.talanta.2014.01.043

    Article  CAS  Google Scholar 

  35. Ma P, Liang F, Sun Y et al (2013) Rapid determination of melamine in milk and milk powder by surface-enhanced Raman spectroscopy and using cyclodextrin-decorated silver nanoparticles. Microchim Acta 180:1173. doi:10.1007/s00604-013-1059-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (No.21375156); National High Technology Research and Development Program of China (863 Projects) (No.2015AA021104 and No.2015AA021107); Frontier Research Key Projects of Chongqing Science and Technology Committee (cstc2015jcyjBX0010) and Scientific and Technical Innovation Projects for People’s Livelihood of Chongqing Science and Technology Committee (cstc2015shms zx0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Xu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Xu, Y., Wang, R. et al. A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine. Microchim Acta 184, 279–287 (2017). https://doi.org/10.1007/s00604-016-1990-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1990-5

Keywords

Navigation