Skip to main content
Log in

Quantification of gold(III) in solution and with a test stripe via the quenching of the fluorescence of molybdenum disulfide quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The paper describes a fluorescent method for determination of Au(III) using molybdenum disulfide quantum dots (MoS2 QDs) that were prepared by a hydrothermal route using glutathione as a reductant. The photoluminescence of MoS2 QDs peaks at 416 nm if excited at 340 nm and is temporally stable even in presence of NaCl or when stored in the refrigerator for one year. Its quantum yield is 12.7 %. The blue-green fluorescence of MoS2 QDs is fairly specifically quenched by Au(III) ions and therefore presents a useful nanoprobe for this ion. Fluorescence intensity drops linearly with the concentration of Au(III) in the range from 0.5 to 1000 μM, and the lower detection limit is 64 nM. The quenching mechanism was investigated and it is concluded that the process is due to the reduction of Au(III) and the deposition of Au(0) on the surface of the MoS2 QDs. The nanoprobe was successfully applied to the determination of Au(III) in (spiked) environmental samples. A test stripe for Au(III) was obtained by soaking a piece of paper with a colloidal solution of the MoS2 QDs, and it was found that this stripe, after drying, can also be used to quantify Au(III) via fluorescence.

Molybdenum disulfide quantum dots (MoS2 QDs) have a high quantum yield and show good stability. MoS2 QDs are shown to be a sensitive fluorescent probe for the determination of Au3+ ions in solution and with a test stripe via fluorescence quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang B, Zhang XB, Liu WN, Hu R, Tan WH, Shen GL, Yu RQ (2013) Fluorosurfactant-capped gold nanoparticles based label-free colorimetric assay for Au3+ with tunable dynamic range via a redox strategy. Biosens Bioelectron 48:1–5

    Article  Google Scholar 

  2. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  CAS  Google Scholar 

  3. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900

    Article  CAS  Google Scholar 

  4. Zhou S-Y, Song N, Liu S-X, Chen D-X, Jia Q, Yang Y-W (2014) Separation and preconcentration of gold and palladium ions with a carboxylated pillar 5 arene derived sorbent prior to their determination by flow injection FAAS. Microchim Acta 181(13–14):1551–1556

    Article  CAS  Google Scholar 

  5. Rahman MM, Khan SB, Marwani HM, Asiri AM, Alamry KA, Al-Youbi AO (2013) Selective determination of gold(III) ion using CuO microsheets as a solid phase adsorbent prior by ICP-OES measurement. Talanta 104(0):75–82

    Article  CAS  Google Scholar 

  6. Cao X, Lin W, Ding Y (2011) Ratio-Au: a FRET-based fluorescent probe for ratiometric determination of gold ions and nanoparticles. Chem Eur J 17(33):9066–9069

    Article  CAS  Google Scholar 

  7. Park JE, Choi MG, Chang S-K (2012) Colorimetric and fluorescent signaling of Au3+ by desulfurization of Thiocoumarin. Inorg Chem 51(5):2880–2884

    Article  CAS  Google Scholar 

  8. Wang B, Fu T, Yang S, Li J, Chen Y (2013) An intramolecular charge transfer (ICT)-based dual emission fluorescent probe for the ratiometric detection of gold ions. Anal Methods 5(15):3639–3641

    Article  CAS  Google Scholar 

  9. Yuan L, Lin W, Yang Y, Song J (2011) A fast-responsive fluorescent probe for detection of gold ions in water and synthetic products. Chem Commun 47(16):4703–4705

    Article  CAS  Google Scholar 

  10. Tan C, Zhang H (2015) Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev 44(9):2713–2731

    Article  CAS  Google Scholar 

  11. Wang QH, Kourosh KZ, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712

  12. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105(13):474–479

    Article  Google Scholar 

  13. Ji Q, Zhang Y, Gao T, Zhang Y, Ma D, Liu M, Chen Y, Qiao X, Tan PH, Kan M (2013) Epitaxial monolayer MoS2 on Mica with novel photoluminescence. Nano Lett 13(8):3870–3877

    Article  CAS  Google Scholar 

  14. Liu X, Li L, Wei Y, Zheng Y, Xiao Q, Feng B (2015) Facile synthesis of boron- and nitride-doped MoS2 nanosheets as fluorescent probes for the ultrafast, sensitive, and label-free detection of Hg2+. Analyst 140:4654–4661

    Article  CAS  Google Scholar 

  15. Zhu CF, Zeng ZY, Li H, Fan L, Fan CH, Zhang H (2013) Single-layer MoS2-based Nanoprobes for homogeneous detection of biomolecules. J Amer Chem Soc 135(16):5998–6001

  16. Wang Y, Ni YN (2014) Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2,4,6-Trinitrophenol detection. Anal Chem 86(15):7463–7470

  17. Dai W, Dong H, Fugetsu B, Cao Y, Lu HT, Ma XL, Zhang XJ (2015) Tunable fabrication of molybdenum disulfide quantum dots for intracellular MicroRNA detection and multiphoton Bioimaging. Small 11(33):4158–4164

  18. Xu S, Li D, Wu P (2015) One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as Bioimaging probes and efficient Electrocatalysts for hydrogen evolution reaction. Adv Funct Mater 25(7):1127–1136

    Article  CAS  Google Scholar 

  19. Singh P, Gupta R, Sinha M, Kumar R, Bhalla V (2016) MoS2 based digital response platform for aptamer based fluorescent detection of pathogens. Microchim Acta 183(4):1501–1506

    Article  CAS  Google Scholar 

  20. Lu Y, Yu J, Ye W, Yao X, Zhou P, Zhang H, Zhao S, Jia L (2016) Spectrophotometric determination of mercury(II) ions based on their stimulation effect on the peroxidase-like activity of molybdenum disulfide nanosheets. Microchim Acta 183(8):2481–2489

    Article  CAS  Google Scholar 

  21. Feng HB, Hu ZB, Liu XF (2015) Facile and efficient exfoliation of inorganic layered materials using liquid alkali metal alloys. Chem Commun 51(54):10961–10964

  22. Schmidt H, Wang S, Chu L, Toh M, Kumar R, Zhao W, Neto AH, Martin J, Adam S, Özyilmaz B, Eda G (2014) Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett 14(4):1909–1913

  23. Ding Z, Bux SK, King DJ, Chang FL, Chen TH, Huang SC, Kaner RB (2009) Lithium intercalation and exfoliation of layered bismuth selenide and bismuth telluride. J Mater Chem 19(17):2588–2592

    Article  CAS  Google Scholar 

  24. Late DJ, Huang YK, liu B, Acharya J, Shirodkar SN, Luo JJ, Yan AM, Charles D, Waghmare UV, Dravid VP, Rao CNR (2013) Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7(6):4879–4891

  25. Djamil J, Segler SAW, Bensch W, Schürmann U, Deng M, Kienle L, Hansen S, Beweries T, Wüllen LV, Rosenfeldt S, Förster S, Reinsch H (2015) In situ formation of a MoS2-based inorganic-organic nanocomposite by directed thermal decomposition. Chem Eur J 21:8918–8925

  26. Li WJ, Shi EW, Ko JM, Chen ZZ, Ogino H, Fukuda T (2003) Hydrothermal synthesis of MoS2 nanowires. J Cryst Growth 250(3):418–422

    Google Scholar 

  27. Liu FK, Chang YC, Ko FH, Chu TC, Dai BT (2003) Rapid fabrication of high quality self-assembled nanometer gold particles by spin coating method. Microelectron. Eng 68(1):702–709

    Google Scholar 

  28. Wang Q, Huang X, Long Y, Wang X, Zhang H, Zhu R, Liang L, Teng P, Zheng H (2013) Hollow luminescent carbon dots for drug delivery. Carbon 59:192–199

    Article  CAS  Google Scholar 

  29. Yu C, Zhu Z, Wang L, Wang Q, Bao N, Gu H (2014) A new disposable electrode for electrochemical study of leukemia K562 cells and anticancer drug sensitivity test. Biosens Bioelectron 53:142–147

    Article  CAS  Google Scholar 

  30. Koroteev VO, Bulusheva LG, Asanov IP, Shlyakhova EV, Vyalikh DV, Okotrub AV (2011) Charge transfer in the MoS2/carbon nanotube composite. J Phys Chem C 115(43):21199–21204

    Article  CAS  Google Scholar 

  31. Lai L, Chen L, Zhan D, Sun L, Liu J, Lim SH, Poh CK, Shen Z, Lin J (2011) One-step synthesis of NH2 -graphene from in situ graphene-oxide reduction and its improved electrochemical properties. Carbon 49(10):3250–3257

    Article  CAS  Google Scholar 

  32. Huang H, Du C, Shi H, Feng X, Li J, Tan Y, Song W (2015) Water-soluble monolayer molybdenum disulfide quantum dots with Upconversion fluorescence. PartPart Syst Char 32(1):72–79

    Article  CAS  Google Scholar 

  33. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F (2010) Emerging Photoluminescence in Monolayer MoS2. Nano Lett 10(4):1271–1275

    Article  CAS  Google Scholar 

  34. Chikan V, Kelley DF (2002) Size-dependent spectroscopy of MoS2 nanoclusters. J Phys Chem B 106(15):3794–3804

    Article  CAS  Google Scholar 

  35. Ghatak S, Pal AN, Ghosh A (2011) Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5(10):7707–7712

    Article  CAS  Google Scholar 

  36. Ou JZ, Chrimes AF, Wang Y, Tang SY, Strano MS, Kalantar-Zadeh K (2014) Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems. Nano Lett 14(2):857–863

    Article  CAS  Google Scholar 

  37. Wang Y, Ou JZ, Balendhran S, Chrimes AF, Mortazavi M, Yao DD, Field MR, Latham K, Bansal V, Friend JR (2013) Electrochemical control of photoluminescence in two-dimensional MoS2 nanoflakes. ACS Nano 7(11):10083–10093

    Article  CAS  Google Scholar 

  38. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots, Adv. Mater 22(6):734–738

    Google Scholar 

  39. Benítez-Martínez S, López-Lorente AI, Valcárcel M (2014) Graphene quantum dots sensor for the determination of graphene oxide in environmental water samples. Anal Chem 86(24):12279–12284

    Article  Google Scholar 

  40. Tong S, Jia Q, Song N, Zhou W, Duan T, Bao C (2010) Determination of gold(III) and palladium(II) in mine samples by cloud point extraction preconcentration coupled with flame atomic absorption spectrometry. Microchim Acta 172(1):95–102

    Google Scholar 

  41. Wang H, Bao C, Li F, Kong X, Xu J (2010) Preparation and application of 4-amino-4'-nitro azobenzene modified chitosan as a selective adsorbent for the determination of Au(III) and Pd(II). Microchim Acta 168(1–2):99–105

    Article  CAS  Google Scholar 

  42. Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum Press, New York

    Book  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant no. 61307103), fundamental & advanced research project of Chongqing, China (cstc2013jcyjC00001), STS Project of Chinese Academy of Sciences (Grant no. KFJ-EW-STS-011), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education. National Natural Science Foundation of China (Grant No. 21407145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyan Cao or Yu Huang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Haiyan Cao and Huanbo Wang contributed equally to this work.

Electronic supplementary material

ESM 1

(DOCX 1099 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Wang, H., Huang, Y. et al. Quantification of gold(III) in solution and with a test stripe via the quenching of the fluorescence of molybdenum disulfide quantum dots. Microchim Acta 184, 91–100 (2017). https://doi.org/10.1007/s00604-016-1988-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1988-z

Keywords

Navigation