Skip to main content
Log in

Highly sensitive electrochemical sensor for the food toxicant Sudan I based on a glassy carbon electrode modified with reduced graphene oxide decorated with Ag-Cu nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a method for room temperature preparation of reduced graphene oxide (rGO) decorated with Ag-Cu nanoparticles (NPs). The nanocomposite (Ag-CuNP/rGO) was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. A glassy carbon electrode (GCE) modified with this nanocomposite dispersed is shown to be a viable electrode for determination of Sudan I (best at a working voltage of −112 mV vs. Ag/AgCl), with remarkably increased electrochemical response to Sudan I compared to that of a plain GCE. The calibration plot is linear in the 1.0 nM to 10 µM concentration range, with a 0.4 nM detection limit (at a signal-to-noise ratio of 3). The method was successfully applied to the determination of Sudan I in ketchup and chili powder.

The nanocomposite of reduced graphene oxide (rGO) decorated with Ag-Cu nanoparticles (Ag-CuNP/rGO) was prepared using NaBH4 as a reductant at room temperature. A glassy carbon electrode (GCE) was coated with a Ag-CuNP/rGO nanocomposite to form a modified electrode that can detect trace concentrations of Sudan I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mao Y, Fan Q, Li J, Yu L, Qu L (2014) A novel and green CTAB-functionalized graphene nanosheets electrochemical sensor for Sudan I determination. Sensors Actuators B Chem 203:759

    Article  CAS  Google Scholar 

  2. Yu W, Liu Z, Li Q, Zhang H, Yu Y (2015) Determination of Sudan I–IV in candy using ionic liquid/anionic surfactant aqueous two-phase extraction coupled with high-performance liquid chromatography. Food Chem 173:815

    Article  CAS  Google Scholar 

  3. Xu X, Tian X, Cai L, Xu Z, Lei H, Wang H, Sun Y (2014) Molecularly imprinted polymer based surface plasmon resonance sensors for detection of Sudan dyes. Anal Methods 6:3751

    Article  CAS  Google Scholar 

  4. Stiborova M, Martinek V, Rydlova H, Hodek P, Frei E (2002) Sudan I is a potential carcinogen for humans: evidence for its metabolic activation and Detoxication by human recombinant cytochrome P450 1 A1 and liver Microsomes. Cancer Res 62:5678

    CAS  Google Scholar 

  5. Li JH, Feng HB, Li J, Feng YL, Zhang YQ, Jiang JB, Qian D (2015) Fabrication of gold nanoparticles-decorated reduced graphene oxide as a high performance electrochemical sensing platform for the detection of toxicant Sudan I. Electrochim Acta 167:226

    Article  CAS  Google Scholar 

  6. Commission Decision 2003/460/EC of 20 June 2003 on emergency measures regarding hot chilli and hot chilli products (2003) Off J Eur Communities L154:114

    Google Scholar 

  7. Calbiani F, Careri M, Elviri L, Mangia A, Pistara L (2004) I. Zagnoni, development and in-house validation of a liquid chromatography–electrospray–tandem mass spectrometry method for the simultaneous determination of Sudan I, Sudan II, Sudan III and Sudan IV in hot chilli products. J Chromatogr A 1042:123

    Article  CAS  Google Scholar 

  8. Hu XG, Fan YA, Zhang Y, Dai GM, Cai QL, Cao YJ, Guo CJ (2012) Molecularly imprinted polymer coated solid-phase microextraction fiber prepared by surface reversible addition–fragmentation chain transfer polymerization for monitoring of Sudan dyes in chilli tomato sauce and chilli pepper samples. Anal Chim Acta 731:40

    Article  CAS  Google Scholar 

  9. Alothman ZA, Unsal YE, Habila M, Shabaka A, Tuzen M, Soylak M (2012) Membrane filtration of Sudan orange G on a cellulose acetate membrane filter for separation–preconcentration and spectrophotometric determination in water, chili powder, chili sauce and tomato sauce samples. Food Chem Toxicol 50:2709

    Article  CAS  Google Scholar 

  10. Piao C, Chen L (2012) Separation of Sudan dyes from chilli powder by magnetic molecularly imprinted polymer. J Chromatogr A 1268:185

    Article  CAS  Google Scholar 

  11. Taverna D, Donna LD, Mazzotti F, Policicchio B, Sindona G (2013) High-throughput determination of Sudan azo-dyes within powdered chili pepper by paper spray mass spectrometry. J Mass Spectrom 48:544

    Article  CAS  Google Scholar 

  12. Xu XY, Tian XG, Cai LG, Xu ZL, Lei HT, Wang H, Sun YM (2014) Molecularly imprinted polymer based surface plasmon resonance sensors for detection of Sudan dyes. Anal Methods 6:3751

    Article  CAS  Google Scholar 

  13. Ling Y, Li JX, Qu F, Li NB, Luo HQ (2014) Rapid fluorescence assay for Sudan dyes using polyethyleneimine-coated copper nanoclusters. Microchim Acta 181:1069

    Article  CAS  Google Scholar 

  14. Elyasi M, Khalilzadeh MA, Karimi-Maleh H (2013) High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem 141:4311

    Article  CAS  Google Scholar 

  15. Wu YH (2010) Electrocatalysis and sensitive determination of Sudan I at the single-walled carbon nanotubes and iron(III)-porphyrin modified glassy carbon electrodes. Food Chem 121:580

    Article  CAS  Google Scholar 

  16. Prabakaran E, Pandian K (2015) Amperometric detection of Sudan I in red chili powder samples using Ag nanoparticles decorated graphene oxide modified glassy carbon electrode. Food Chem 166:198

    Article  CAS  Google Scholar 

  17. Geim AK, Novoselov KS (2007) The rise of grapheme. Nat Mater 6:183

    Article  CAS  Google Scholar 

  18. Sahoo NG, Pan YZ, Li L, Chan SH (2012) Graphene-based materials for energy conversion. Adv Mater 24:4203

    Article  CAS  Google Scholar 

  19. Kong BS, Geng J, Jung HT (2009) Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem Commun 16:2174

    Article  Google Scholar 

  20. Yang L, Wang G, Liu Y (2013) An acetylcholinesterase biosensor based on platinum nanoparticles–carboxylic graphene–nafion-modified electrode for detection of pesticides. Anal Biochem 437:144–149

    Article  CAS  Google Scholar 

  21. Gong J, Miao X, Zhou Z, Zhang L (2011) An enzymeless organophosphate pesticide sensor using Au nanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction. Talanta 85:1344

    Article  CAS  Google Scholar 

  22. Lu XQ, Qi HT, Zhang XF, Xue ZH, Jin J, Zhou XB, Liu XH (2011) Highly dispersive Ag nanoparticles on functionalized graphene for an excellent electrochemical sensor of nitroaromatic compounds. Chem Commun 47:12494

    Article  CAS  Google Scholar 

  23. Luo J, Jiang SS, Zhang HY, Jiang JQ, Liu XY (2012) A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47

    Article  CAS  Google Scholar 

  24. Vilian ATE, Hwang SK, Kwak ChH OSY, Kim CY, Lee G, Lee Jin B, Huh YS, Han YK (2016) Pt-Au bimetallic nanoparticles decorated on reduced graphene oxide as an excellent electrocatalysts for methanol oxidation. Synth Met 219:52

    Article  CAS  Google Scholar 

  25. Takehiro N, Liu P, Bergbreiter A, Nørskovb JK, Behm RJ (2014) Hydrogenadsorption on bimetallic Pd-Au(111) surface alloys: minimum adsorptionensemble, ligand and ensemble effects, and ensemble confinement. PhysChem Chem Phys 16:23930

    CAS  Google Scholar 

  26. Ding LX, Li GR, Wang ZL, Liu ZQ, Liu H, Tong YX (2012) Porous Ni@Pt Core-Shell nanotube Array Electrocatalyst with high activity and stability for methanol oxidation. Chem-Eur J 18:8386

    Article  CAS  Google Scholar 

  27. Yin AX, Min XQ, Zhu W, Liu WC, Zhang YW, Yan CH (2012) Pt-Cu and Pt-Pd-Cu concave nanocubes with high-index facets and superiorelectrocatalytic activity. Chem Eur J 18:777–782

    Article  CAS  Google Scholar 

  28. Yano H, Kataoka M, Yamashita H, Uchida H, Watanabe M (2007) Oxygenreduction activity of carbon-supported Pt-M (M = V, Ni, Cr, Co, and Fe) alloysprepared by nanocapsule method. Langmuir 23:6438

    Article  CAS  Google Scholar 

  29. Mao H, Li RS, Jiang K, Huang T, Yu AS (2013) Facile preparation of Cu@Pt/rGO hybrids and their electrocatalyticactivities for methanol oxidation. Electrochim Acta 107:419

    Article  CAS  Google Scholar 

  30. Sreedhar NY, Kumar MS, Krishnaveni K (2015) Sensitive determination of chlorpyrifos using Ag/Cu alloynanoparticles and graphene composite paste electrode. Sensors Actuators B 210:475

    Article  CAS  Google Scholar 

  31. Li FH, Guo YQ, Liu Y, Qiu HX, Sun XY, Wang W, Liu Y, Gao JP (2013) Fabrication of Pt–Cu/RGO hybrids and their electrochemical performance for the oxidation of methanol and formic acid in acid media. Carbon 64:11

    Article  CAS  Google Scholar 

  32. Mao H, Li RS, Jiang K, Huang T, Yu AS (2011) Facile preparation of Cu@Pt/rGO hybrids and their electrocatalytic activities for methanol oxidation. Electrochim Acta 107(2013):419–424

    Google Scholar 

  33. Osch THJ, Perelaer J, Laat AWM, Schubert US (2008) Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv Mater 20:343

    Article  Google Scholar 

  34. Li GP, Luo YJ (2008) Preparation and characterization of dendrimer-templated Ag–Cu bimetallic nanoclusters. Inorg Chem 47:360

    Article  CAS  Google Scholar 

  35. Hummers JW, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  36. Kang P, Bobyr E, Dustman J, Hodgson KO, Hedman B, Solomon EI, Stack TDP (2010) Bis(μ-oxo) Dicopper(III) species of the simplest Peralkylated diamine: enhanced reactivity toward exogenous substrates. Inorg Chem 49:11030

    Article  CAS  Google Scholar 

  37. Ma LB, Shen XP, Ji ZY, Zhu GX, Zhou H (2014) Ag nanoparticles decorated MnO2/reduced graphene oxide as advanced electrode materials for supercapacitors. Chem Eng J 252:95

    Article  CAS  Google Scholar 

  38. Jia ZF, Chen TD, Wang J, Ni JJ, Li HY, Shao X (2015) Synthesis, characterization and tribological properties of Cu/reduced graphene oxide composites. Tribol Int 88:17

    Article  CAS  Google Scholar 

  39. Li C, Liu W, Gu Y, Hao S, Yan X, Zhang Z, Yang M (2014) Simultaneous determination of catechol and hydroquinone based on poly (sulfosalicylic acid)/functionalized graphene modified electrode. J Appl Electrochem 44:1059

    Article  CAS  Google Scholar 

  40. Prabakaran E, Pandian K (2015) Amperometric detection of Sudan I in red chili powder samples using Ag nanoparticles decorated graphene oxide modified glassy carbon electrode. Food Chem 166:198

    Article  CAS  Google Scholar 

  41. Duan DH, Liu HH, You X, Wei HK, Liu SB (2015) Anodic behavior of carbon supported Cu@Ag core–shell nanocatalysts in direct borohydride fuel cells. J Power Sources 293:292

    Article  CAS  Google Scholar 

  42. Gan T, Li K, Wu K (2008) Multi-wall carbon nanotube-based electrochemical sensor for sensitive determination of Sudan I. Sensors Actuators B Chem 132:134

    Article  CAS  Google Scholar 

  43. Yang D, Zhu L, Jiang X (2010) Electrochemical reaction mechanism and determination of Sudan I at a multi wall carbon nanotubes modified glassy carbon electrode. J Electroanal Chem 640:17

    Article  CAS  Google Scholar 

  44. Chen S, Du D, Huang J, Zhang A, Tu H, Zhang A (2011) Rational design and application of molecularly imprinted sol–gel polymer for the electrochemically selective and sensitive determination of Sudan I. Talanta 84:451

    Article  CAS  Google Scholar 

  45. Zhang L, Zhang X, Li X, Peng Y, Shen H, Zhang Y (2013) Determination of Sudan I using electrochemically reduced graphene oxide. Anal Lett 46:923

    Article  CAS  Google Scholar 

  46. Wu M, Tang W, Gu J, Wang Q, He P, Fang Y (2013) Electrochemical detection of Sudan I using a multi-walled carbon nanotube/chitosan composite modified glassy carbon electrode. Am J Anal Chem 4:1

    Article  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (Grant No. 20775002, 21405003) for financial support. The work was supported by Program for Innovative Research Team in Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhousheng Yang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 2999 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Liu, Y. & Yang, Z. Highly sensitive electrochemical sensor for the food toxicant Sudan I based on a glassy carbon electrode modified with reduced graphene oxide decorated with Ag-Cu nanoparticles. Microchim Acta 183, 3275–3283 (2016). https://doi.org/10.1007/s00604-016-1977-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1977-2

Keywords

Navigation