Microchimica Acta

, Volume 184, Issue 1, pp 45–58 | Cite as

Gold and silver nanoparticles and indicator dyes as active agents in colorimetric spot and strip tests for mercury(II) ions: a review

  • Fitri Zarlaida
  • Muhammad Adlim
Review Article


This review with 111 references covers recent progress made in the field of strip tests and spot tests for quantitative determination of mercury(II) ions. Following an introduction into the subject and the fundamentals of colorimetric determination, we first cover methods for synthesis and characterization of gold and silver nanoparticles (NPs) and give representative examples. The next sections cover (a) methods for dye-based detection of Hg(II) ions (categorized into azo, acridine, anthraquinone, di−/triarylmethane, nitro/nitroso, cyanine, triazole, oxazine, thiazine, dioxazine and xanthene dyes), and (b) techniques for immobilization of active agents (NPs and indicators) on the solid support. A conclusion section discusses current challenges and trends in future research.

Graphical abstract

This review summarizes recent progress made in the field of strip tests and spot tests for quantitative determination of mercury(II) ions by using gold and silver nanoparticles (NPs).


Gold nanoparticles Silver nanoparticles Spectrophotometry Visual test Immobilization Solid support Protecting agent Polymer stabilizer Detection limit DNA 


Compliance with ethical standards

Conflict of interest

The author(s) declare that they have no competing interests.


  1. 1.
    Wang J, Feng X, Anderson CWN, Xing Y, Shang L (2012) Remediation of mercury contaminated sites – a review. J Hazard Mater 221-222:1–18CrossRefGoogle Scholar
  2. 2.
    Yuan CG, Li QP, Feng YN, Chang AL (2010) Fractions and leaching characteristics of mercury in coal. Environ Monit Assess 167:581–586CrossRefGoogle Scholar
  3. 3.
    Luginaah IN, Ernest KY (2009) Environment and health in sub-Saharan Africa: managing an emerging crisis. Springer, Heilderberg. doi: 10.1007/978-1-4020-9382-1 CrossRefGoogle Scholar
  4. 4.
    Horvat M (1996) In: Baeyens W et al (eds) In global and regional mercury cycles: sources, fluxes and mass balances. Kluwer Academic Press, Dordrecht. doi: 10.1007/978-94-009-1780-4 Google Scholar
  5. 5.
    Amyot M, Morel FMM, Ariya PA (2005) Dark oxidation of dissolved and liquid elemental mercury in aquatic environments. Environ Sci Technol 39:110–114CrossRefGoogle Scholar
  6. 6.
    Schaefer JK, Morel FMM (2009) High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nat Geosci 2:123–126CrossRefGoogle Scholar
  7. 7.
    Schaefer JK, Rocks SS, Zheng W, Liang L, Gu B, Morel FMM (2011) Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci 108:8714–8719CrossRefGoogle Scholar
  8. 8.
    Adlim M, Zarlaida F (2015) Chitosan based chemical sensors for determination of mercury in water : a review. Int J Bioflux Soc 8:656–666Google Scholar
  9. 9.
    Rastogi L, Sashidhar RB, Karunasagar D, Arunachalam J (2014) Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg2+ in aqueous system. Talanta 118:111–117CrossRefGoogle Scholar
  10. 10.
    Ministry of the Environment, Jepan (2004). Mercury Analysis Manual, (e).pdf (retrieved on July 14, 2016)
  11. 11.
    Kaur N, Kumar S (2011) Colorimetric metal ion sensors. Tetrahedron 67:9233–9264CrossRefGoogle Scholar
  12. 12.
    Vilela D, González MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. Anal Chim Acta 751:24–43CrossRefGoogle Scholar
  13. 13.
    Ding Y, Wang S, Li J, Chen L (2016) Nanomaterial-based optical sensors for mercury ions. TrAC Trends Anal Chem 82:175–190CrossRefGoogle Scholar
  14. 14.
    Pomogailo AD (1999) Polymer-immobilized nanoscale and cluster metal particles. Nanostructured Mater 12:291–294CrossRefGoogle Scholar
  15. 15.
    Adlim M (2006) Review: preparations and application of metal nanoparticles. Indones J Chem 6:1–10Google Scholar
  16. 16.
    Adlim M, Bakar MA (2008) Preparation of chitosan-gold nanoparticles : part 1 ( of 2 ). Effect of reducing technique. Indones J Chem 8:184–188Google Scholar
  17. 17.
    Adlim M, Bakar MA (2008) Preparation of chitosan-gold nanoparticles : part 2. The role of chitosan. Indones J Chem 8:320–326Google Scholar
  18. 18.
    Brust M, Kiely CJ (2002) Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surfaces A Physicochem Eng Asp 202:175–186CrossRefGoogle Scholar
  19. 19.
    Vajtai R (2013) Handbook of nanomaterials. Springer, Heilderberg. doi: 10.1007/978-3-642-20595-8 Google Scholar
  20. 20.
    Chansuvarn W, Tuntulani T, Imyim A (2015) Colorimetric detection of mercury(II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold-based nanomaterials. TrAC Trends Anal Chem 65:83–96CrossRefGoogle Scholar
  21. 21.
    Duan J, Zhan J (2015) Recent developments on nanomaterials-based optical sensors for Hg2+ detection. Sci. China Mater 58:223–240CrossRefGoogle Scholar
  22. 22.
    Botasini S, Heijo G, Méndez E (2013) Toward decentralized analysis of mercury (II) in real samples. A critical review on nanotechnology-based methodologies. Anal Chim Acta 800:1–11CrossRefGoogle Scholar
  23. 23.
    Oliveira E, Nunez C, Santos HM, Fernandez-Lodeiro J, Fernandez-Lodeiro A, Capelo JL, Lodeiro C (2015) Revisiting the use of gold and silver functionalised nanoparticles as colorimetric and fluorometric chemosensors for metal ions. Sensors Actuators B Chem 212:297–328CrossRefGoogle Scholar
  24. 24.
    Chen Z, Zhang C, Wan C, Lin Y, Li K (2015) Chitosan-functionalized gold nanoparticles for colorimetric detection of mercury ions based on chelation-induced aggregation. Microchim Acta 182:611–616CrossRefGoogle Scholar
  25. 25.
    Lee JS, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chemie - Int Ed 46:4093–4096CrossRefGoogle Scholar
  26. 26.
    Chen Y, Yao L, Deng Y, Pan D, Ogabiela E, Cao J, Adeloju SB, Chen W (2015) Rapid and ultrasensitive colorimetric detection of mercury(II) by chemically initiated aggregation of gold nanoparticles. Microchim Acta 182:2147–2154CrossRefGoogle Scholar
  27. 27.
    Li D, Wieckowska A, Willner I (2008) Optical analysis of Hg2+ ions by oligonucleotide-gold- nanoparticle hybrids and DNA-based machines. Angew Chemie - Int Ed 47:3927–3931CrossRefGoogle Scholar
  28. 28.
    Tianyu H, Xu Y, Weidan N, Xingguang S (2016) Aptamer-based aggregation assay for mercury ( II ) using gold nanoparticles and fluorescent CdTe quantum dots. Microchim Acta 183:2131–2137CrossRefGoogle Scholar
  29. 29.
    Shamsipur M, Safavi A, Mohammadpour Z, Ahmadi R (2016) Highly selective aggregation assay for visual detection of mercury ion based on competitive binding of sulfur-doped carbon nanodots to gold nanoparticles and mercury ions. Microchim Acta 183:2327–2335CrossRefGoogle Scholar
  30. 30.
    Noor AM, Rameshkumar P, Huang NM, Wei LS (2016) Visual and spectrophotometric determination of mercury(II) using silver nanoparticles modified with graphene oxide. Microchim Acta 183:597–603CrossRefGoogle Scholar
  31. 31.
    Fan Y, Liu Z, Wang L, Zhan J (2009) Synthesis of starch-stabilized Ag nanoparticles and Hg2+ recognition in aqueous media. Nanoscale Res Lett 4:1230–1235CrossRefGoogle Scholar
  32. 32.
    Kamali KZ, Pandikumar A, Jayabal S, Ramaraj R, Lim HN, Ong BH, Bien CSD, Kee YY, Huang NM (2016) Amalgamation based optical and colorimetric sensing of mercury(II) ions with silver@graphene oxide nanocomposite materials. Microchim Acta 183:369–377CrossRefGoogle Scholar
  33. 33.
    Katok KV, Whitby RLD, Fukuda T, Maekawa T, Bezverkhyy I, Mikhalovsky SV, Cundy AB (2012) Hyperstoichiometric interaction between silver and mercury at the nanoscale. Angew Chemie - Int Ed 51:2632–2635CrossRefGoogle Scholar
  34. 34.
    Wang GL, Zhu XY, Jiao HJ, Dong YM, Li ZJ (2012) Ultrasensitive and dual functional colorimetric sensors for mercury (II) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles. Biosens Bioelectron 31:337–342CrossRefGoogle Scholar
  35. 35.
    Tang J, Wu P, Hou X, Xu K (2016) Modification-free and N-acetyl-L-cysteine-induced colorimetric response of AuNPs : a mechanistic study and sensitive Hg2+ detection. Talanta 159:87–92CrossRefGoogle Scholar
  36. 36.
    Chen Z, Zhang C, Ma H, Zhou T, Jiang B, Chen M, Chen X (2015) A non-aggregation spectrometric determination for mercury ions based on gold nanoparticles and thiocyanuric acid. Talanta 134:603–606CrossRefGoogle Scholar
  37. 37.
    Chen H, Hu W, Li CM (2015) Colorimetric detection of mercury(II) based on 2,2′-bipyridyl induced quasi-linear aggregation of gold nanoparticles. Sensors Actuators B Chem 215:421–427CrossRefGoogle Scholar
  38. 38.
    Kiran K (2014) Gold nanoparticles for mercury determination in environmental water and vegetable samples. Appl Nanosci 5:361–366CrossRefGoogle Scholar
  39. 39.
    Zhu Y, Cai Y, Zhu Y, Zheng L, Ding J, Quan Y (2015) Highly sensitive colorimetric sensor for Hg2+ detection based on cationic polymer/DNA interaction. Biosens Bioelectron 69:174–178CrossRefGoogle Scholar
  40. 40.
    Zhou Y, Dong H, Liu L, Li M, Xiao K, Xu M (2014) Selective and sensitive colorimetric sensor of mercury (II) based on gold nanoparticles and 4-mercaptophenylboronic acid. Sensors Actuators B Chem 196:106–111CrossRefGoogle Scholar
  41. 41.
    Li YL, Leng YM, Zhang YJ, Li TH, Shen ZY, Wu AG (2014) A new simple and reliable Hg2+ detection system based on anti-aggregation of unmodified gold nanoparticles in the presence of O-phenylenediamine. Sensors Actuators B Chem 200:140–146CrossRefGoogle Scholar
  42. 42.
    Liu Z, Hu J, Tong S, Cao Q, Yuan H (2012) Colorimetric detection of Hg2+ ions in aqueous media using CA – au NPs. Spectrochim Acta Part A Mol Biomol Spectrosc 97:737–740CrossRefGoogle Scholar
  43. 43.
    Li Y, Wu P, Xu H, Zhang Z, Zhong X (2011) Highly selective and sensitive visualizable detection of Hg2+ based on anti-aggregation of gold nanoparticles. Talanta 84:508–512CrossRefGoogle Scholar
  44. 44.
    Maity D, Kumar A, Gunupuru R, Paul P (2014) Colorimetric detection of mercury(II) in aqueous media with high selectivity using calixarene functionalized gold nanoparticles. Colloids Surfaces A Physicochem Eng Asp 455:122–128CrossRefGoogle Scholar
  45. 45.
    Jin LH, Han CS (2014) Eco-friendly colorimetric detection of mercury(II) ions using label-free anisotropic nanogolds in ascorbic acid solution. Sensors Actuators B Chem 195:239–245CrossRefGoogle Scholar
  46. 46.
    Tripathi RM et al (2014) Ultra-sensitive detection of mercury(II) ions in water sample using gold nanoparticles synthesized by Trichoderma harzianum and their mechanistic approach. Sensors Actuators B Chem 204:637–646CrossRefGoogle Scholar
  47. 47.
    He Y, Zhang X, Zeng K, Zhang S, Baloda M, Gurung AS, Liu G (2011) Visual detection of Hg2+ in aqueous solution using gold nanoparticles and thymine-rich hairpin DNA probes. Biosens Bioelectron 26:4464–4470CrossRefGoogle Scholar
  48. 48.
    Wu J, Li L, Zhu D, He P, Fang Y, Cheng G (2011) Colorimetric assay for mercury (II) based on mercury-specific deoxyribonucleic acid-functionalized gold nanoparticles. Anal Chim Acta 694:115–119CrossRefGoogle Scholar
  49. 49.
    Guo Y, Wang Z, Qu W, Shao H, Jiang X (2011) Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens Bioelectron 26:4064–4069CrossRefGoogle Scholar
  50. 50.
    Ding N, Zhao H, Peng W, He Y, Zhou Y, Yuan L, Zhang Y (2012) A simple colorimetric sensor based on anti-aggregation of gold nanoparticles for Hg2+ detection. Colloids Surfaces A Physicochem Eng Asp 395:161–167CrossRefGoogle Scholar
  51. 51.
    Nalawade P, Kapoor S (2013) Gold nanoflowers based colorimetric detection of Hg2+ and Pb2+ ions. Spectrochim Acta Part A Mol Biomol Spectrosc 116:132–135CrossRefGoogle Scholar
  52. 52.
    Chansuvarn W, Imyim A (2012) Visual and colorimetric detection of mercury(II) ion using gold nanoparticles stabilized with a dithia-diaza ligand. Microchim Acta 176:57–64CrossRefGoogle Scholar
  53. 53.
    Du J, Wang Z, Fan J, Peng X (2015) Gold nanoparticle-based colorimetric detection of mercury ion via coordination chemistry. Sensors Actuators B Chem 212:481–486CrossRefGoogle Scholar
  54. 54.
    Fan A, Ling Y, Lau C, Lu J (2010) Direct colorimetric visualization of mercury (Hg2+) based on the formation of gold nanoparticles. Talanta 82:687–692CrossRefGoogle Scholar
  55. 55.
    Kumar VV, Anthony SP (2016) Highly selective colorimetric sensing of Hg2+ ions by label free AuNPs in aqueous medium across wide pH range. Sensors Actuators B Chem 225:413–419CrossRefGoogle Scholar
  56. 56.
    Adio SO, Basheer C, Zafarullah K, Alsharaa A, Siddiqui Z (2016) Biogenic synthesis of silver nanoparticles; study of the effect of physicochemical parameters and application as nanosensor in the colorimetric detection of Hg2+ in water. Int J Environ Anal Chem 96:776–788CrossRefGoogle Scholar
  57. 57.
    Jarujamrus P, Amatatongchai M, Thima A, Khongrangdee T, Mongkontong C (2015) Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury. Spectrochim Acta Part A Mol Biomol Spectrosc 142:86–93CrossRefGoogle Scholar
  58. 58.
    Duan J, Yin H, Wei R, Wang W (2014) Facile colorimetric detection of Hg2+ based on anti-aggregation of silver nanoparticles. Biosens Bioelectron 57:139–142CrossRefGoogle Scholar
  59. 59.
    Li L, Feng D, Fang X, Han X, Zhang Y (2014) Visual sensing of Hg2+ using unmodified Au@Ag core–shell nanoparticles. J Nanostructure Chem 4:117–125CrossRefGoogle Scholar
  60. 60.
    Maiti S, Barman G, Laha K (2016) Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver nanoparticles. Appl Nanosci 6:529–538CrossRefGoogle Scholar
  61. 61.
    Song J, Ma Q, Zhang S, Guo Y, Dong C (2016) Preparation of silver nanoparticles reduced by Formamidinesulfinic acid and its application in colorimetric sensor. J Clust Sci 27:1203–1212CrossRefGoogle Scholar
  62. 62.
    Jeevika A, Shankaran DR (2016) Functionalized silver nanoparticles probe for visual colorimetric sensing of mercury. Mater Res Bull 83:48–55CrossRefGoogle Scholar
  63. 63.
    Kumar VV, Anbarasan S, Christena LR, Saisubramanian N, Philip AS (2014) Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies. Spectrochim Acta - Part A Mol Biomol Spectrosc 129:35–42CrossRefGoogle Scholar
  64. 64.
    Nidya M, Umadevi M, Rajkumar BJM (2014) Structural, morphological and optical studies of l-cysteine modified silver nanoparticles and its application as a probe for the selective colorimetric detection of Hg2+. Spectrochim Acta-Part A Mol Biomol Spectrosc 133:265–271CrossRefGoogle Scholar
  65. 65.
    Anbazhagan V, Ahmed KBA, Janani S (2014) Synthesis of catalytically active silver nanoparticles using lipid derived signaling molecule. N-steroylethanolamine: Promising antibacterial agent and selective colorimetric sensor for mercury ion Sensors Actuators, B Chem 200:92–100Google Scholar
  66. 66.
    Ahmed MA, Hasan N, Mohiuddin S (2014) Silver nanoparticles : green synthesis, characterization, and their usage in determination of mercury contamination in Seafoods. ISRN Nanotechnol 2014Google Scholar
  67. 67.
    Alam A, Ravindran A, Chandran P, Khan SS (2015) Highly selective colorimetric detection and estimation of Hg2+ at nano-molar concentration by silver nanoparticles in the presence of glutathione. Spectrochim. Acta Part A Mol Biomol Spectrosc 137:503–508CrossRefGoogle Scholar
  68. 68.
    Ahmed KBA, Senthilnathan R, Megarajan S, Anbazhagan V (2015) Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing. J Photochem Photobiol B Biol 151:39–45CrossRefGoogle Scholar
  69. 69.
    Bothra S, Solanki JN, Sahoo SK (2013) Functionalized silver nanoparticles as chemosensor for pH, Hg2+ and Fe3+ in aqueous medium. Sensors Actuators B Chem 188:937–943CrossRefGoogle Scholar
  70. 70.
    Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A (2012) Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensors Actuators B Chem 161:880–885CrossRefGoogle Scholar
  71. 71.
    Gao S, Jia X, Chen Y (2013) Old tree with new shoots: silver nanoparticles for label-free and colorimetric mercury ions detection. J Nanopart Res 15:1385–1394CrossRefGoogle Scholar
  72. 72.
    Xu S, Yang H, Zhao K, Li J, Mei L, Xie Y, Deng A (2015) Preparation of orange-red fluorescent gold nanoclusters using denatured casein as a reductant and stabilizing agent, and their application to imaging of HeLa cells and for the quantitation of mercury(II). Microchim Acta 182:2577–2584CrossRefGoogle Scholar
  73. 73.
    Sareen D, Kaur P, Singh K (2014) Strategies in detection of metal ions using dyes. Coord Chem Rev 265:125–154CrossRefGoogle Scholar
  74. 74.
    Lee S, Rao BA, SonYA (2014) Colorimetric and ‘turn-on’ fluorescent determination of Hg2+ ions based on a rhodamine-pyridine derivative. Sensors Actuators B Chem 196:388–397.Google Scholar
  75. 75.
    Lee HY, Swamy KMK, Jung JY, Kim G, Yoon J (2013) Rhodamine hydrazone derivatives based selective fluorescent and colorimetric chemodosimeters for Hg2+ and selective colorimetric chemosensor for Cu2+. Sensors Actuators B Chem 182:530–537CrossRefGoogle Scholar
  76. 76.
    Kim SK et al (2010) New fluorescent and colorimetric chemosensors based on the rhodamine and boronic acid groups for the detection of Hg2+. Tetrahedron Lett 51:3286–3289CrossRefGoogle Scholar
  77. 77.
    Liu J, Wu D, Yan X, Guan Y (2013) Naked-eye sensor for rapid determination of mercury ion. Talanta 116:563–568CrossRefGoogle Scholar
  78. 78.
    Angupillai S, Hwang JY. Lee JY, Rao BA, Son YA (2015) Efficient rhodamine-thiosemicarbazide-based colorimetric/fluorescent ‘turn-on’ chemodosimeters for the detection of Hg2+ in aqueous samples. Sensors Actuators B Chem 214:101–110.Google Scholar
  79. 79.
    Ahamed BN, Ghosh P (2011) An integrated system of pyrene and rhodamine-6G for selective colorimetric and fluorometric sensing of mercury(II). Inorganica Chim Acta 372:100–107CrossRefGoogle Scholar
  80. 80.
    Liu K, Zhou Y, Yao C (2011) A highly sensitive and selective ratiometric and colorimetric sensor for Hg2+ based on a rhodamine-nitrobenzoxadiazole conjugate. Inorg Chem Commun 14:1798–1801CrossRefGoogle Scholar
  81. 81.
    Wanichacheva N, Setthakarn PN, Hanmeng O, Lee VS, Grudpan K (2012) Rhodamine B-based turn-on fluorescent and colorimetric chemosensors for highly sensitive and selective detection of mercury (II) ions. J Lumin 132:35–40CrossRefGoogle Scholar
  82. 82.
    Wanichacheva N, Praikaew P, Suwanich T, Sukrat K (2014) ‘naked-eye’ colorimetric and ‘turn-on’ fluorometric chemosensors for reversible Hg2+ detection. Spectrochim Acta-Part A Mol Biomol Spectrosc 118:908–914CrossRefGoogle Scholar
  83. 83.
    Wang M, Yan F, Zou Y, Yang N, Chen L, Chen LG (2014) A rhodamine derivative as selective fluorescent and colorimetric chemosensor for mercury (II) in buffer solution, test strips and living cells. Spectrochim Acta-Part A Mol Biomol Spectrosc 123:216–223CrossRefGoogle Scholar
  84. 84.
    Patidar R, Rebary B, Paul P (2015) Colorimetric and fluorogenic recognition of Hg2+ and Cr3+ in acetonitrile and their test paper recognition in aqueous media with the aid of rhodamine based sensors. J Fluoresc 25:387–395CrossRefGoogle Scholar
  85. 85.
    Erdemir S, Kocyigit O, Malkondu S (2015) Detection of Hg2+ ion in aqueous media by new fluorometric and colorimetric sensor based on triazole–rhodamine. J Photochem Photobiol A Chem 309:15–21CrossRefGoogle Scholar
  86. 86.
    Pinheiro D, Castro CS, Melo JSS, Oliveira E, Nunez C, Fernandez-Lodeiro A, Capelo JL, Lodeiro C (2014) From yellow to pink using a fluorimetric and colorimetric pyrene derivative and mercury (II) ions. Dyes Pigments 110:152–158CrossRefGoogle Scholar
  87. 87.
    Weng J, Mei Q, Ling Q, Fan Q, Huang W (2012) A new colorimetric and fluorescent ratiometric sensor for Hg2+ based on 4-pyren-1-yl-pyrimidine. Tetrahedron 68:3129–3134CrossRefGoogle Scholar
  88. 88.
    Martínez R, Espinosa A, Tárraga A, Molina P (2010) A new bis(pyrenyl)azadiene-based probe for the colorimetric and fluorescent sensing of Cu(II) and Hg(II). Tetrahedron 66:3662–3667CrossRefGoogle Scholar
  89. 89.
    Shafeekh KM, Rahim MKA, Basheer MC, Suresh CH, Das S (2013) Highly selective and sensitive colourimetric detection of Hg2+ ions by unsymmetrical squaraine dyes. Dyes Pigments 96:714–721CrossRefGoogle Scholar
  90. 90.
    Bae JS, Son YA, Kim SH (2009) Benzothiazole-based semisquaraine as colorimetric chemosensor for Hg2+. Fibers Polym 10:403–405CrossRefGoogle Scholar
  91. 91.
    Guo Y, An J, Tang H, Peng M, Suzenet F (2015) Selective and ‘turn-off’ fluorimetric detection of mercury(II) based on coumarinyldithiolane and coumarinyldithiane in aqueous solution. Mater Res Bull 63:155–163CrossRefGoogle Scholar
  92. 92.
    He X, Zhang J, Liu X, Dong L, Li D, Qiu H, Yin S (2014) A novel BODIPY-based colorimetric and fluorometric dual-mode chemosensor for Hg2+ and Cu2+. Sensors Actuators B Chem 192:29–35CrossRefGoogle Scholar
  93. 93.
    Xie R, Yi Y, He Y, Liu X, Liu ZX (2013) A simple BODIPY–imidazole-based probe for the colorimetric and fluorescent sensing of Cu(II) and Hg(II). Tetrahedron 69:8541–8546CrossRefGoogle Scholar
  94. 94.
    Choi YW, You GR, Lee MM, Kim J, Jung KD, Kim C (2014) Highly selective recognition of mercury ions through the ‘naked-eye’. Inorg Chem Commun 46:43–46CrossRefGoogle Scholar
  95. 95.
    Wang K, Yang L, Zhao C, Ma H (2013) 4-(8-quinolyl)amino-7-nitro-2,1,3-benzoxadiazole as a new colorimetric probe for rapid and visual detection of Hg2+. Spectrochim Acta Part A Mol Biomol Spectrosc 105:29–33CrossRefGoogle Scholar
  96. 96.
    Ruan Y, Maisonneuve S, Xie J (2011) Highly selective fl uorescent and colorimetric sensor for Hg2+ based on triazole-linked NBD. Dyes Pigments 90:239–244CrossRefGoogle Scholar
  97. 97.
    Lin Q, Fu YP, Chen P, Wei TB, Zhang YM (2013) Colorimetric chemosensors designed to provide high sensitivity for Hg2+ in aqueous solutions. Dyes Pigments 96:1–6CrossRefGoogle Scholar
  98. 98.
    Kim JH, Noh JY, Hwang IH, Lee JJ, Kim C (2013) A NBD-based selective colorimetric and fluorescent chemosensor for Hg2+. Tetrahedron Lett 54:4001–4005CrossRefGoogle Scholar
  99. 99.
    Kavitha R, Stalin T (2014) A highly selective chemosensor for colorimetric detection of Hg2+ and fluorescence detection of pH changes in aqueous solution. J Lumin 149:12–18CrossRefGoogle Scholar
  100. 100.
    Chebrolu LD, Thurakkal S, Shankar BH, Ramaiah D (2014) Selective and dual naked eye detection of Cu2+ and Hg2+ ions using a simple Quinoline-Carbaldehyde chemosensor. Sensors Actuators B Chem 204:480–488CrossRefGoogle Scholar
  101. 101.
    Nuriman KB, Verboom W (2009) Selective chemosensor for Hg(II) ions based on tris[2-(4-phenyldiazenyl)phenylaminoethoxy]cyclotriveratrylene in aqueous samples. Anal Chim Acta 655:75–79CrossRefGoogle Scholar
  102. 102.
    Kaur P, Sareen D (2011) The synthesis and development of a dual-analyte colorimetric sensor: simultaneous estimation of Hg2+ and Fe3+. Dyes Pigments 88:296–300CrossRefGoogle Scholar
  103. 103.
    Oehme I, Wolfbeis OS (1997) Optical sensors for determination of heavy metal ions. Microchim Acta 126:177–192CrossRefGoogle Scholar
  104. 104.
    Barton J, Garcia MBG, Santos DH, Fanjul-Bolado P, Ribotti A, McCaul M, Diamond D, Magni P (2016) Screen-printed electrodes for environmental monitoring of heavy metal ions: a review. Microchim Acta 183:503–517CrossRefGoogle Scholar
  105. 105.
    Apilux A, Siangproh W, Praphairaksit N, Chailapakul O (2012) Simple and rapid colorimetric detection of Hg(II) by a paper-based device using silver nanoplates. Talanta 97:388–394CrossRefGoogle Scholar
  106. 106.
    Chemnasiri W, Hernandez FE (2012) Gold nanorod-based mercury sensor using functionalized glass substrates. Sensors Actuators B Chem 173:322–328CrossRefGoogle Scholar
  107. 107.
    Xie J, Zheng Y, Ying JY (2010) Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions. Chem Commun 46:961–963CrossRefGoogle Scholar
  108. 108.
    Cai Y, Yan L, Liu G, Yuan H, Xiao D (2013) In-situ synthesis of fluorescent gold nanoclusters with electrospun fibrous membrane and application on Hg(II) sensing. Biosens Bioelectron 41:875–879CrossRefGoogle Scholar
  109. 109.
    Duan J, Guo ZY (2012) Development of a test strip based on DNA-functionalized gold nanoparticles for rapid detection of mercury (II) ions. Chinese Chem Lett 23:225–228CrossRefGoogle Scholar
  110. 110.
    Goy RC, Britto DD, Assis OBG (2009) A review of the antibacterial activity of chitosan. Polim Cienc e Tecnol 19:241–247CrossRefGoogle Scholar
  111. 111.
    Caner N, Sarı A, Tüzen M (2015) Adsorption characteristics of mercury(II) ions from aqueous solution onto chitosan-coated diatomite. Ind Eng Chem Res 54:7524–7533CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Graduate School of Mathematics and Applied ScienceSyiah Kuala UniversityBanda AcehIndonesia

Personalised recommendations