Skip to main content
Log in

Synthesis of peptide templated copper nanoclusters for fluorometric determination of Fe(III) in human serum

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Copper nanoclusters (Cu-NCs) were prepared by reducing CuCl2 with ascorbic acid in the presence of the short peptide template Cys-Cys-Cys-Asp-Leu. They were characterized by UV-vis absorption and fluorescence spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The Cu-NCs have a size of ~2 nm, can be well dispersed in water and are photostable. Their fluorescence (peaking at 425 nm under 365-nm excitation) is quenched by Fe(III) ions. Based on this finding, a sensitive and selective fluorescence assay for the detection of Fe(III) was developed. Under optimized conditions and a pH value of 2.0, the assay displays a linear response in the 0.05 to 30 μM Fe(III) concentration range, with a detection limit of 20 nM based on an S/N ratio of 3. The assay was successfully applied to the determination of Fe(III) in spiked human serum where is gave recoveries that ranged from 96.2 % to 98.3 %.

Copper nanoclusters (Cu-NCs) were prepared by reducing CuCl2 with ascorbic acid with peptide as the template. The fluorescence of Cu-NCs is quenched by Fe(III) ions with a linear response in the 0.05 to 30 μM of Fe(III) concentration range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Nandre J, Patil S, Patil V, Yu F, Chen L, Sahoo S, Prior T, Redshaw C, Mahulikar P, Patil U (2014) A novel fluorescent “turn-on” chemosensor for nanomolar detection of Fe(III) from aqueous solution and its application in living cells imaging. Biosens Bioelectron 61:612–617

    Article  CAS  Google Scholar 

  2. Chen Y, Wu Y, Weng B, Wang B, Li C (2016) Facile synthesis of nitrogen and sulfur co-doped carbon dots and application for Fe(III) ions detection and cell imaging. Sensors Actuators B Chem 223:689–696

    Article  CAS  Google Scholar 

  3. Wang B, Hai J, Liu Z, Wang Q, Yang Z, Sun S (2010) Selective detection of iron(III) by rhodamine-modified Fe3O4 nanoparticles. Angew Chem Int Ed 49(27):4576–4579

    Article  CAS  Google Scholar 

  4. Cairo G, Pietrangelo A (2000) Iron regulatory proteins in pathobiology. Biochem J 352:241–250

    Article  CAS  Google Scholar 

  5. Kim H, Rao BA, Jeong J, Angupillai S, Choi JS, Nam J-O, Lee C-S, Son Y-A (2016) A rhodamine scaffold immobilized onto mesoporous silica as a fluorescent probe for the detection of Fe (III) and applications in bio-imaging and microfluidic chips. Sensors Actuators B Chem 224:404–412

    Article  CAS  Google Scholar 

  6. Lynch SR (1997) Interaction of iron with other nutrients. Nutr Rev 55(4):102–110

    Article  CAS  Google Scholar 

  7. Kim J, Kim YJ, Lee R, Moon JH, Jo I (2012) Serum levels of zinc, calcium, and iron are associated with the risk of preeclampsia in pregnant women. Nutr Res 32(10):764–769

    Article  CAS  Google Scholar 

  8. Li L, Li L, Wang C, Liu K, Zhu R, Qiang H, Lin Y (2015) Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Microchim Acta 182(3–4):763–770

    Article  CAS  Google Scholar 

  9. Wang F, Hao Q, Zhang Y, Xu Y, Lei W (2016) Fluorescence quenchometric method for determination of ferric ion using boron-doped carbon dots. Microchim Acta 183(1):273–279

    Article  CAS  Google Scholar 

  10. Gupta VK, Mergu N, Kumawat LK (2016) A new multifunctional rhodamine-derived probe for colorimetric sensing of Cu(II) and Al(III) and fluorometric sensing of Fe(III) in aqueous media. Sensors Actuators B Chem 223:101–113

    Article  CAS  Google Scholar 

  11. Bricks JL, Kovalchuk A, Trieflinger C, Nofz M, Buschel M, Tolmachev AI, Daub J, Rurack K (2005) On the development of sensor molecules that display Fe-III-amplified fluorescence. J Am Chem Soc 127(39):13522–13529

    Article  CAS  Google Scholar 

  12. Luo J, Rasooly A, Wang L, Zeng K, Shen C, Qian P, Yang M, Qu F (2016) Fluorescent turn-on determination of the activity of peptidases using peptide templated gold nanoclusters. Microchim Acta 183(2):605–610

    Article  CAS  Google Scholar 

  13. Quan H, Zuo C, Li T, Liu Y, Li M, Zhong M, Zhang Y, Qi H, Yang M (2015) Electrochemical detection of carcinoembryonic antigen based on silver nanocluster/horseradish peroxidase nanocomposite as signal probe. Electrochim Acta 176:893–897

    Article  CAS  Google Scholar 

  14. Guo Q, Li X, Shen C, Zhang S, Qi H, Li T, Yang M (2015) Electrochemical immunoassay for the protein biomarker mucin 1 and for MCF-7 cancer cells based on signal enhancement by silver nanoclusters. Microchim Acta 182(7–8):1483–1489

    Article  CAS  Google Scholar 

  15. Pei H, Zhu S, Yang M, Kong R, Zheng Y, Qu F (2015) Graphene oxide quantumdots@silver core–shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens Bioelectron 74:909–914

    Article  CAS  Google Scholar 

  16. Lu Y, Chen W (2012) Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev 41(9):3594

    Article  CAS  Google Scholar 

  17. Díez I, Ras RHA (2011) Fluorescent silver nanoclusters. Nanoscale 3(5):1963

    Article  Google Scholar 

  18. Shang L, Dong S, Nienhaus GU (2011) Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6(4):401–418

    Article  CAS  Google Scholar 

  19. Shen C, Xia X, Hu S, Yang M, Wang J (2015) Silver nanoclusters-based fluorescence assay of protein kinase activity and inhibition. Anal Chem 87(1):693–698

    Article  CAS  Google Scholar 

  20. Jin R (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2(3):343–362

    Article  CAS  Google Scholar 

  21. Chen J, Liu J, Fang Z, Zeng L (2012) Random dsDNA-templated formation of copper nanoparticles as novel fluorescence probes for label-free lead ions detection. Chem Commun 48(7):1057–1059

    Article  CAS  Google Scholar 

  22. Kang X, Mai Z, Zou X, Cai P, Mo J (2007) A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal Biochem 363(1):143–150

    Article  CAS  Google Scholar 

  23. Shen J-S, Chen Y-L, Wang Q-P, Yu T, Huang X-Y, Yang Y, Zhang H-W (2013) In situ synthesis of red emissive copper nanoclusters in supramolecular hydrogels. J Mater Chem C 1(11):2092

    Article  CAS  Google Scholar 

  24. Vilar-Vidal N, Blanco MC, Lopez-Quintela MA, Rivas J, Serra C (2010) Electrochemical synthesis of very stable photoluminescent copper clusters. J Phys Chem C 114(38):15924–15930

    Article  CAS  Google Scholar 

  25. Huang H, Li H, Wang A-J, Zhong S-X, Fang K-M, Feng J-J (2014) Green synthesis of peptide-templated fluorescent copper nanoclusters for temperature sensing and cellular imaging. Analyst 139(24):6536–6541

    Article  CAS  Google Scholar 

  26. Mu X, Qi L, Dong P, Qiao J, Hou J, Nie Z, Ma H (2013) Facile one-pot synthesis of l-proline-stabilized fluorescent gold nanoclusters and its application as sensing probes for serum iron. Biosens Bioelectron 49:249–255

    Article  CAS  Google Scholar 

  27. Zhang W, Gan J (2016) Synthesis of blue-photoluminescent graphene quantum dots/polystyrenic anion-exchange resin for Fe(III) detection. App. Surf Sci 372:145–151

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Key Basic Research Program of China (2014CB744502), the Special Foundation for State Major Basic Research Program of China (2015FY111100), the National Natural Science Foundation of China (No. 21575165) and the Natural Science Foundation of Hunan province (No. 2015JJ1019) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghui Yang or Xiang Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, T., Ouyang, J., Hu, L. et al. Synthesis of peptide templated copper nanoclusters for fluorometric determination of Fe(III) in human serum. Microchim Acta 183, 2831–2836 (2016). https://doi.org/10.1007/s00604-016-1935-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1935-z

Keywords

Navigation