Microchimica Acta

, Volume 183, Issue 10, pp 2753–2760 | Cite as

Colorimetric determination of staphylococcal enterotoxin B via DNAzyme-guided growth of gold nanoparticles

  • Dandan Zhou
  • Guoming Xie
  • Xianqing Cao
  • Xueping Chen
  • Xing Zhang
  • Hui ChenEmail author
Original Paper


The authors describe a colorimetric method for the determination of the staphylococcal enterotoxin B (SEB) that also allows for visual readout. The assay is based on the growth of gold nanoparticles (AuNPs) mediated by a hemin/G-quadruplex DNAzyme which generates a color change from red to blue in the presence of SEB. The method is enzyme-free and does not require a label. The kinetics of the formation of the AuNPs is controlled by the hemin/G-quadruplex DNAzyme and this is key to the signal generation mechanism. In the presence of SEB, the reactions between aptamer and target modulated the amount of single probe G strands that form DNAzyme capable of consuming hydrogen peroxide. The growth process of AuNPs is influenced by the resulting concentration of H2O2 and leads to the color change. Under optimal conditions, a linear relationship exists between absorbance and SEB concentration in the range from 0.1 to 500 pg·mL‾1 which covers the clinically relevant range. In case of visual detection, the lower limit of detection is 1 pg·mL−1. The assay described here is sensitive, comparably inexpensive and can detect SEB rapidly without the need for sophisticated equipment. In our perception, the method has a wide scope in that it may be adapted to various nucleic acids, proteins and other biomolecules if respective aptamers are available.

Graphical abstract

Colorimetric determination of Staphylococcal enterotoxin B via DNAzyme-guided growth of gold nanoparticles


Plasmonic resonance Aptamer Hemin/G-quadruplex Colorimetry Microplate assay Gold nanoparticle Staphylococcal enterotoxin B 



This work was financially supported by National Natural Science Foundation of China (No. 81171415).

Compliance with ethical standards

Competing interests

The author(s) declare that they have no competing interests.

Supplementary material

604_2016_1919_MOESM1_ESM.docx (3.2 mb)
ESM 1 (DOCX 3.23 mb)


  1. 1.
    Giljohann DA, Mirkin CA (2009) Drivers of biodiagnostic development. Nature 462:461–464CrossRefGoogle Scholar
  2. 2.
    Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JH (2015) Emerging technologies for next-generation point-of-care testing. Trends Biotechnol 33:692–705CrossRefGoogle Scholar
  3. 3.
    Seok Y, Byun JY, Mun H, Kim MG (2014) Colorimetric detection of PCR products of DNA from pathogenic bacterial targets based on a simultaneously amplified DNAzyme. Microchim Acta 183:1965–1971CrossRefGoogle Scholar
  4. 4.
    Chapman R, Lin Y, Burnapp M, Bentham A, Hillier D, Zabron A, Khan S, Tyreman M, Stevens MM (2015) Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum. ACS Nano 9:2565–2573CrossRefGoogle Scholar
  5. 5.
    Howes PD, Rana S, Stevens MM (2014) Plasmonic nanomaterials for biodiagnostics. Chem Soc Rev 43:3835–3853CrossRefGoogle Scholar
  6. 6.
    Gormley AJ, Chapman R, Stevens MM (2014) Polymerization amplified detection for nanoparticle-based biosensing. Nano Lett 14:6368–6373CrossRefGoogle Scholar
  7. 7.
    Zhao Q, Huang HW, Zhang LY, Wang LQ, Zeng YL, Xia XD, Liu FP, Chen Y (2016) Strategy to fabricate naked-eye readout ultrasensitive plasmonic nanosensor based on enzyme mimetic gold aanoclusters. Anal Chem 88:1412–1418CrossRefGoogle Scholar
  8. 8.
    Engelbrekt C, Sørensen KH, Zhang J, Welinder AC, Jensen PS, Ulstrup J (2009) Green synthesis of gold nanoparticles with starch–glucose and application in bioelectrochemistry. J Mater Chem 19:7839–7847CrossRefGoogle Scholar
  9. 9.
    Howes PD, Chandrawati R, Stevens MM (2014) Colloidal nanoparticles as advanced biological sensors. Science 346:53–63CrossRefGoogle Scholar
  10. 10.
    de la Rica R, Stevens MM (2012) Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol 7:821–824CrossRefGoogle Scholar
  11. 11.
    Cecchin D, de la Rica R, Bain RE, Finnis MW, Stevens MM, Battaglia G (2014) Plasmonic ELISA for the detection of gp120 at ultralow concentrations with the naked eye. Nanoscale 6:9559–9562CrossRefGoogle Scholar
  12. 12.
    Travascio P, Li Y, Sen D (1998) DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem Biol 5:505–517CrossRefGoogle Scholar
  13. 13.
    Deng M, Zhang D, Zhou Y, Zhou X (2008) Highly effective colorimetric and visual detection of nucleic acids using an asymmetrically split peroxidase DNAzyme. J Am Chem Soc 130:13095–13102CrossRefGoogle Scholar
  14. 14.
    Zhao C, Hoppe T, Setty MK, Murray D, Chun TW, Hewlett I, Appella DH (2014) Quantification of plasma HIV RNA using chemically engineered peptide nucleic acids. Nat Commun 5:5079CrossRefGoogle Scholar
  15. 15.
    Hu L, Liu X, Cecconello A, Willner I (2014) Dual switchable CRET-induced luminescence of CdSe/ZnS quantum dots (QDs) by the hemin/G-quadruplex-bridged aggregation and deaggregation of two-sized QDs. Nano Lett 14:6030–6035CrossRefGoogle Scholar
  16. 16.
    Deng R, Wang L, Yi G, Hua E, Xie G (2014) Target-induced aptamer release strategy based on electrochemical detection of staphylococcal enterotoxin B using GNPs-ZrO2-chits film. Colloids Surf B Biointerfaces 120:1–7CrossRefGoogle Scholar
  17. 17.
    Rusnak JM, Kortepeter M, Ulrich R, Poli M, Boudreau E (2004) Laboratory exposures to staphylococcal enterotoxin B. Emerging. Infect Dis 10:1544–1549CrossRefGoogle Scholar
  18. 18.
    Moises SS, Schäferling M (2009) Toxin immunosensors and sensor arrays for food quality control. Bioanal Rev 1:73–104CrossRefGoogle Scholar
  19. 19.
    Labib M, Hedstrom M, Amin M, Mattiasson B (2009) A capacitive biosensor for detection of staphylococcal enterotoxin B. Anal Bioanal Chem 393:1539–1544CrossRefGoogle Scholar
  20. 20.
    Tao L, Zhang C, Zhang J, Sun Y, Li X, Yan K, Jin B, Zhang Z, Yang K (2016) Sensitive chemiluminescence immunoassay for staphylococcal enterotoxin C1 based on the use of dye-encapsulated mesoporous silica nanoparticles. Microchim Acta 183:2163–2168CrossRefGoogle Scholar
  21. 21.
    Karaseva N, Ermolaeva T (2015) A regenerable piezoelectric immunosensor on the basis of electropolymerized polypyrrole for highly selective detection of staphylococcal enterotoxin a in foodstuffs. Microchim Acta 182:1329–1335CrossRefGoogle Scholar
  22. 22.
    LY W, Gao B, Zhang F, Sun XL, Zhang YZ, Li ZJ (2013) A novel electrochemical immunosensor based on magnetosomes for detection of staphylococcal enterotoxin B in milk. Talanta 106:360–366CrossRefGoogle Scholar
  23. 23.
    Vinayaka AC, Thakur MS (2012) An immunoreactor-based competitive fluoroimmunoassay for monitoring staphylococcal enterotoxin B using bioconjugated quantum dots. Analyst 137:4343–4348CrossRefGoogle Scholar
  24. 24.
    Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z (2013) A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy. Anal Chim Acta 782:59–66CrossRefGoogle Scholar
  25. 25.
    Temur E, Zengin A, Boyaci IH, Dudak FC, Torul H, Tamer U (2012) Attomole sensitivity of staphylococcal enterotoxin B detection using an aptamer-modified surface-enhanced Raman scattering probe. Anal Chem 84:10600–10606CrossRefGoogle Scholar
  26. 26.
    Xiong J, Wang W, Zhou Y, Kong W, Wang Z, Fu Z (2016) Ultra-sensitive chemiluminescent detection of Staphylococcus aureus based on competitive binding of Staphylococcus protein A-modified magnetic beads to immunoglobulin G. Microchim Acta 183:1507–1512CrossRefGoogle Scholar
  27. 27.
    Yang MH, Sun S, Kostov Y, Rasooly A (2011) An automated point-of-care system for Immunodetection of staphylococcal enterotoxin B. Anal Biochem 416:74–81CrossRefGoogle Scholar
  28. 28.
    DeGrasse JA (2012) A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS One 7:e33410CrossRefGoogle Scholar
  29. 29.
    Wang K, Gan L, Jiang L, Zhang X, Yang X, Chen M, Lan X (2015) Neutralization of staphylococcal enterotoxin B by an aptamer antagonist. Antimicrob Agents Chemother 29:2072–2077CrossRefGoogle Scholar
  30. 30.
    Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998CrossRefGoogle Scholar
  31. 31.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc:801–802Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Dandan Zhou
    • 1
  • Guoming Xie
    • 2
    • 3
  • Xianqing Cao
    • 2
  • Xueping Chen
    • 2
  • Xing Zhang
    • 2
  • Hui Chen
    • 1
    Email author
  1. 1.Clinical LaboratoriesThe First Affiliated Hospital of Chongqing Medical UniversityChongqingPeople’s Republic of China
  2. 2.Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory MedicineChongqing Medical UniversityChongqingPeople’s Republic of China
  3. 3.State and Local Joint Engineering Laboratory For Vascular ImplantsBioengineering College of Chongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations