Skip to main content
Log in

Exploring a monothiolated β-cyclodextrin as the template to synthesize copper nanoclusters with exceptionally increased peroxidase-like activity

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a method for increasing the peroxidase-like catalytic properties of copper nanoclusters (Cu-NCs) that are used in non-enzymatic assays. The Cu-NCs were prepared by utilizing 6-thio-β-cyclodextrin as both the template and as effective modulators for increasing the peroxidase-like properties of the Cu-NCs. The β-CD-coated Cu-NCs have an average diameter of 2 nm, are stable in aqueous solutions, display strong fluorescence with excitation/emission peak wavelengths of 360/450 nm, and possess peroxidase-like catalytic activity which makes them a useful enzyme mimic. We have applied the findings to non-enzymatic photometric determination (at 650 nm) of (a) H2O2 in the concentration range of 0.02 to 10 mM using the β-CD/Cu-NC assisted oxidation of tetramethylbenzidine by H2O2, and (b) glucose in the concentration range of 0.04 to 20 mM after addition of glucose oxidase and formation of H2O2. The detection limits (at an S/N ratio of 3) are 0.2 μM for H2O2 and 0.4 μM for glucose. The β-CD coating is found to result in a strong increase in the reaction rate, probably because the cavity of β-CD acts as a pocket for the recognition and catalysis of substrate. Hence, the binding specificity becomes similar to that of natural enzymes.

The peroxidase-like catalytic activity of Cu-NCs in non-enzymatic sensors is strongly enhanced by utilizing mono-6-thio-β-cyclodextrin (mono-6-SH-β-CD) as both the template molecule and the effective rate modulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin YH, Huang YY, Ren JS, Qu XG (2014) Incorporating ATP into biomimetic catalysts for realizing exceptional enzymatic performance over a broad temperature range. NPG Asia Mater 6:e114

    Article  CAS  Google Scholar 

  2. Barber J (2009) Photosynthetic energy conversion: Natural and artificial. Chem Soc Rev 38:185–196

    Article  CAS  Google Scholar 

  3. Lin YH, Ren JS, Qu XG (2014) Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc Chem Res 47:1097–1105

    Article  CAS  Google Scholar 

  4. Han L, Li CC, Zhang T, Lang QL, Liu AH (2015) Au@Ag Heterogeneous Nanorods as Nanozyme Interfaces with Peroxidase-Like Activity and Their Application for One-Pot Analysis of Glucose at Nearly Neutral pH. ACS Appl Mater Interfaces 7:14463–14470

    Article  CAS  Google Scholar 

  5. Asati A, Kaittanis C, Santra S, Perez JM (2011) pH-Tunable Oxidase-Like Activity of Cerium Oxide Nanoparticles Achieving Sensitive Fluorigenic Detection of Cancer Biomarkers at Neutral pH. Anal Chem 83:2547–2553

    Article  CAS  Google Scholar 

  6. Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. Angew Chem Int Ed 48:2308–2312

    Article  CAS  Google Scholar 

  7. Zheng XX, Liu Q, Jing C, Li Y, Li D, Luo WJ, Wen YQ, He Y, Huang Q, Long YT, Fan C (2011) Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew Chem Int Ed 50:11994–11998

    Article  CAS  Google Scholar 

  8. Cui RJ, Han ZD, Zhu JJ (2011) Helical Carbon Nanotubes: Intrinsic Peroxidase Catalytic Activity and Its Application for Biocatalysis and Biosensing. Chem Eur J 17:9377–9384

    Article  CAS  Google Scholar 

  9. Zhang W, Liu XY, Walsh D, Yao SY, Kou Y, Ma D (2012) Caged-Protein-Confined Bimetallic Structural Assemblies with Mimetic Peroxidase Activity. Small 8:2948–2953

    Article  CAS  Google Scholar 

  10. Ho CH, Tobis J, Sprich C, Thomann R, Tiller JC (2004) Nanoseparated polymeric networks with multiple antimicrobial properties. Adv Mater 16:957–961

    Article  CAS  Google Scholar 

  11. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and Properties of Nanocrystals of Different Shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  12. Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: Past, present, and future. Langmuir 25:13840–13851

    Article  CAS  Google Scholar 

  13. Campbell CT, Parker SC, Starr DE (2002) The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering. Science 298:811–814

    Article  CAS  Google Scholar 

  14. Comotti M, Della Pina C, Matarrese R, Rossi M (2004) Heterogeneous catalysis: The catalytic activity of "Naked" gold particles. Angew Chem Int Ed 43:5812–5815

    Article  CAS  Google Scholar 

  15. Qian HF, Jiang D, Li G, Gayathri C, Das A, Gil RR, Jin RC (2012) Monoplatinum Doping of Gold Nanoclusters and Catalytic Application. J Am Chem Soc 134:16159–16162

    Article  CAS  Google Scholar 

  16. Li H, Li L, Pedersen A, Gao Y, Khetrapal N, Jonsson H, Zeng XC (2015) Magic-Number Gold Nanoclusters with Diameters from 1 to 35 nm: Relative Stability and Catalytic Activity for CO Oxidation. Nano Lett 15:682–688

    Article  Google Scholar 

  17. Tang DY, Chen ZZ, Zhang J, Tang Y, Xu ZG (2014) Computational Study on Cycloisomerization /Oxidative Dimerization of Aryl Propargyl Ethers Catalyzed by Gold Nanoclusters: Mechanism and Selectivity. Organomet 33:6633–6642

    Article  CAS  Google Scholar 

  18. Chen L, Sha L, Qiu YW, Wang GF, Jiang H, Zhang XJ (2015) An amplified electrochemical aptasensor based on hybridization chain reactions and catalysis of silver nanoclusters. Nanoscale 7:3300–3308

    Article  CAS  Google Scholar 

  19. Yang X, Gan LF, Zhu CZ, Lou BH, Han L, Wang J, Wang EK (2014) A dramatic platform for oxygen reduction reaction based on silver nanoclusters. Chem Commun 50:234–236

    Article  CAS  Google Scholar 

  20. Wang N, Sun J, Chen L, Fan H, Ai S (2015) A Cu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim Acta 182:1733–1738

    Article  CAS  Google Scholar 

  21. Čunderlová V, Hlaváček A, Horňáková V, Peterek M, Němeček D, Hampl A, Skládal P (2016) Catalytic nanocrystalline coordination polymers as an efficient peroxidase mimic for labeling and optical immunoassays. Microchim Acta 183:651–658

    Article  Google Scholar 

  22. Ding C, Yan Y, Xiang D, Zhang C, Xian Y (2016) Magnetic Fe3S4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay. Microchim Acta 183:625–631

    Article  CAS  Google Scholar 

  23. Xiang Z, Wang Y, Ju P, Zhang D (2016) Optical determination of hydrogen peroxide by exploiting the peroxidase-like activity of AgVO3 nanobelts. Microchim Acta 183:457–463

    Article  CAS  Google Scholar 

  24. Wei WT, YZ L, Chen W, Chen SW (2011) One-Pot Synthesis, Photoluminescence, and Electrocatalytic Properties of Subnanometer-Sized Copper Clusters. J Am Chem Soc 133:2060–2063

    Article  CAS  Google Scholar 

  25. Jia XF, Yang X, Li J, Li DY, Wang EK (2014) Stable Cu nanoclusters: from an aggregation-induced emission mechanism to biosensing and catalytic applications. Chem Commun 50:237–239

    Article  CAS  Google Scholar 

  26. Wenz G, Han BH, Muller A (2006) Cyclodextrin rotaxanes and polyrotaxanes. Chem Rev 106:782–817

    Article  CAS  Google Scholar 

  27. Zhao XH, Liu X, Lu M (2014) β-cyclodextrin-capped palladium nanoparticle-catalyzed ligand-free Suzuki and Heck couplings in low-melting β-cyclodextrin/NMU mixtures. Appl Organomet Chem 28:635–640

    Article  CAS  Google Scholar 

  28. Putta C, Sharavath V, Sarkar S, Ghosh S (2015) Palladium nanoparticles on β-cyclodextrin functionalised graphene nanosheets: a supramolecular based heterogeneous catalyst for C–C coupling reactions under green reaction conditions. RSC Adv 5:6652–6660

    Article  CAS  Google Scholar 

  29. Chen S, Zhang JB, Gan N, FT H, Li TH, Cao YT, Pan DD (2015) An on-site immunosensor for ractopamine based on a personal glucose meter and using magnetic β-cyclodextrin-coated nanoparticles for enrichment, and an invertase-labeled nanogold probe for signal amplification. Microchim Acta 182:815–822

    Article  CAS  Google Scholar 

  30. Ng CHB, Yang JX, Fan WY (2008) Synthesis and self-assembly of one-dimensional sub-10 nm Ag nanoparticles with cyclodextrin. J Phys Chem C 112:4141–4145

    Article  CAS  Google Scholar 

  31. Huang T, Meng F, Qi LM (2009) Facile synthesis and one-dimensional assembly of cyclodextrin-capped gold nanoparticles and their applications in catalysis and surface–enhanced Raman scattering. J Phys Chem C 113:13636–13642

    Article  CAS  Google Scholar 

  32. Ban R, Abdel-Halim ES, Zhang JR, Zhu JJ (2015) β-Cyclodextrin functionalised gold nanoclusters as luminescence probes for the ultrasensitive detection of dopamine. Analyst 140:1046–1053

    Article  CAS  Google Scholar 

  33. YZ L, Wei WT, Chen W (2012) Copper nanoclusters: Synthesis, characterization and properties. Chin Sci Bull 57:41–47

    Article  Google Scholar 

  34. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan XY (2007) Intrinsic peroxidase–like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    Article  CAS  Google Scholar 

  35. Song YJ, KG Q, Zhao C, Ren JS, Qu XG (2010) Graphene Oxide: intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection. Adv Mater 22:2206–2210

    Article  CAS  Google Scholar 

  36. Yun J, Li BX, Cao R (2010) Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46:8017–8019

    Article  CAS  Google Scholar 

  37. LZ H, Yuan YL, Zhang L, Zhao JM, Majeed S, Xu GB (2013) Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal Chim Acta 762:83–86

    Article  Google Scholar 

  38. Wang N, Li BC, Qiao FM, Sun JC, Fan H, Ai SY (2015) Humic acid-assisted synthesis of stable copper nanoparticles as a peroxidase mimetic and their application in glucose detection. J Mater Chem B 3:7718–7723

    Article  CAS  Google Scholar 

  39. Qiao FM, Qi QQ, Wang ZZ, Xu K, Ai SY (2016) MnSe-loaded g-C3N4 nanocomposite with synergistic peroxidase-like catalysis: Synthesis and application toward colorimetric biosensing of H2O2 and glucose. Sens Actuators, B 229:379–386

    Article  CAS  Google Scholar 

  40. WQ W, Li YB, Jin JY, HM W, Wang SF, Xia QH (2016) A novel nonenzymatic electrochemical sensor based on 3D flower-like Ni7S6 for hydrogen peroxide and glucose. Sens Actuators, B 232:633–641

    Article  Google Scholar 

  41. Shi WB, Wang QL, Long YJ, Cheng ZL, Chen SH, Zheng HZ, Huang YM (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47:6695–6697

    Article  CAS  Google Scholar 

  42. JS M, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun 48:2540–2542

    Article  Google Scholar 

  43. Dong YL, Zhang HG, Rahman ZU, Su L, Chen XJ, Hu J, Chen XG (2012) Graphene oxide–Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4:3969–3976

    Article  CAS  Google Scholar 

  44. Dong SY, Yang QX, Peng L, Fang Y, Huang TL (2016) Dendritic Ag@Cu bimetallic interface for enhanced electrochemical responses on glucose and hydrogen peroxide. Sens Actuators, B 232:375–382

    Article  CAS  Google Scholar 

  45. Jin LH, Shang L, Guo SJ, Fang YX, Wen D, Wang L, Yin JY, Dong SJ (2011) Biomolecule-stabilized Au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosens Bioelectron 26:1965–1969

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Hubei Province (2015CFB273).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu He or Gongwu Song.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 1.15 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Deng, C., He, Y. et al. Exploring a monothiolated β-cyclodextrin as the template to synthesize copper nanoclusters with exceptionally increased peroxidase-like activity. Microchim Acta 183, 2823–2830 (2016). https://doi.org/10.1007/s00604-016-1915-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1915-3

Keywords

Navigation