Skip to main content
Log in

Core-shell like Cu2O nanocubes enfolded with Co(OH)2 on reduced graphene oxide for the amperometric detection of caffeine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report on the fabrication of Co(OH)2-enfolded Cu2O nanocubes on reduced graphene oxide (rGO), and the use of this material in an electrochemical caffeine sensor. The rGO/Cu2O/Co(OH)2 composite was characterized by X-ray powder diffraction pattern analysis, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. A rotating disc glassy carbon electrode covered with the nanocomposite displays enhanced electrocatalytic activity towards the electro-oxidation of caffeine. The peak oxidation potential is at 1.4  V (vs. Ag/AgCl) and hence is strongly shifted to the negative side when compared to other modified electrodes. The calibration plot is linear in the 0.83 to 1200 μM concentration range, with a 0.4 μM detection limit (at a signal-to-noise ratio of 3). The modified electrode is sensitive, selective and stable. It was successfully applied to the determination of caffeine in (spiked) caffeine-containing beverages and coffee powder and gave recoveries that ranged from 95.7 to 98.3 %.

Co(OH)2 enfolded Cu2O nanocubes on reduced graphene oxide (rGO) for the caffeine sensor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Textor Z, Beer M, Anetseder M, Köstler H, Kagerbauer E, Kenn W, Roewer N (2003) Caffeine impairs intramuscular energy balance in patients susceptible to malignant hyperthermia. Muscle Nerve 28:353–358

    Article  CAS  Google Scholar 

  2. Jeevagan AJ, John SA (2012) electrochemical determination of caffeine in the presence of paracetamol using a self-assembled monolayer of non-peripheral amine substituted copper (II) phthalocyanine. Electrochim Acta 77:137–142

    Article  CAS  Google Scholar 

  3. Zhang QL, Lian HZ, Wang WH, Chen HY (2005) Separation of caffeine and theophylline in poly (dimethylsiloxane) microchannel electrophoresis with electrochemical detection. J Chromatogr A 1098:172–176

    Article  CAS  Google Scholar 

  4. Kriško A, Kveder M, Pifat G (2005) Effect of caffeine on oxidation susceptibility of human plasma low density lipoproteins. Clin Chim Acta 355:47–53

    Article  Google Scholar 

  5. Nurminen ML, Niittynen L, Korpela R, Vapaatalo H (1999) Coffee, caffeine and blood pressure: a critical review. Eur J Clin Nutr 53:831–839

    Article  CAS  Google Scholar 

  6. Mandel HG (2002) Update on caffeine consumption, disposition and action. Food Chem Toxicol 40:1231–1234

    Article  CAS  Google Scholar 

  7. Wang A, Li L, Zang F, Fang Y (2000) Amperometric detection of three purine alkaloids following their separation by micellar electrokinetic capillary chromatography. Anal Chim Acta 419:235–242

    Article  CAS  Google Scholar 

  8. Fernandez PL, Martin MJ, Gonzalez AG, Pablos F (2000) HPLC determination of catechins and caffeine in tea. Differentiation of green, Black and instant teas. Analyst 125:421–425

    Article  CAS  Google Scholar 

  9. Sharma V, Gulati A, Ravindranath SD, Kumar V (2005) A simple and convenient method for analysis of tea biochemicals by reverse phase HPLC. J Food Compos Anal 18:583–594

    Article  CAS  Google Scholar 

  10. Regan F, Shakalisava Y (2005) Rapid simultaneous determination of alkylxanthines by CZE and its application in analysis of pharmaceuticals and food samples. Anal Chim Acta 540:103–110

    Article  CAS  Google Scholar 

  11. Jones J, Magri R, Rios R, Jones M, Plate C, Lewis D (2011) The detection of caffeine and cotinine in umbilical cord tissue using liquid chromatography–tandem mass spectrometry. Anal Methods 3:1310–1315.

  12. López-Martı́nez L, López-de-Alba PL, Garcı́a-Campos R, De León-Rodrı́guez LM (2003) Simultaneous determination of methylxanthines in coffees and teas by UV-Vis spectrophotometry and partial least squares. Anal Chim Acta 493:83–94.

  13. Rawat A, Chandra S, Sarkar A (2010) Easy Way of Sample Monitoring: Chemical Sensors and Biosensors. Anal Bioanal Chem 2:212–216

    Google Scholar 

  14. Švorc Ľ (2013) Determination of caffeine: a comprehensive review on electrochemical methods. Int J Electrochem Sci 8:5755–5773

    Google Scholar 

  15. Karikalan N, Velmurugan M, Chen SM, Chelladurai K (2016) A copper hexacyanocobaltate nanocubes based dopamine sensor in the presence of ascorbic acid. RSC Adv 6:48523–48529

    Article  CAS  Google Scholar 

  16. Wang W, Zhang L, Tong S, Li X, Song W (2009) Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination. Biosens Bioelectron 25:708–714

    Article  CAS  Google Scholar 

  17. Daltin AL, Addad A, Chopart JP (2005) Potentiostatic deposition and characterization of cuprous oxide films and nanowires. J Cryst Growth 282:414–420

    Article  CAS  Google Scholar 

  18. Kuo CH, Huang MH (2008) Fabrication of truncated rhombic dodecahedral Cu2O nanocages and nanoframes by particle aggregation and acidic etching. J Am Chem Soc 130:12815–12820

    Article  CAS  Google Scholar 

  19. Zhang J, Liu J, Peng Q, Wang X, Li Y Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem Mater 18:867–871

  20. Guan L, Pang H, Wang J, Lu Q, Yin J, Gao F (2010) Fabrication of novel comb-like Cu2O nanorod-based structures through an interface etching method and their application as ethanol sensors. Chem Commun 46:7022–7024

    Article  CAS  Google Scholar 

  21. Li S, Zheng Y, Qin GW, Ren Y, Pei W, Zuo L (2011) Enzyme-free amperometric sensing of hydrogen peroxide and glucose at a hierarchical Cu2O modified electrode. Talanta 85:1260–1264

    Article  CAS  Google Scholar 

  22. Liu M, Liu R, Chen W (2013) Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212

    Article  CAS  Google Scholar 

  23. Li H, Li J, Chen D, Qiu Y, Wang W (2015) Dual-functional cubic cuprous oxide for non-enzymatic and oxygen-sensitive photoelectrochemical sensing of glucose. Sensors Actuators B Chem 220:441–447

    Article  CAS  Google Scholar 

  24. Carter SR, Rimmer S (2002) Molecular recognition of caffeine by shell molecular imprinted core–shell polymer particles in aqueous media. Adv Mater 14:667–670

    Article  CAS  Google Scholar 

  25. Yang J, Liu H, Martens WN, Frost RL (2009) Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J Phys Chem C 114:111–119

    Article  Google Scholar 

  26. Ghosh K, Kumar M, Maruyama T, Ando Y (2010) Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution. Carbon 48:191–200

    Article  CAS  Google Scholar 

  27. Han P, Yue Y, Zhang L, Xu H, Liu Z, Zhang K, Zhang C, Dong S, Ma W, Cui G (2012) Nitrogen-doping of chemically reduced mesocarbon microbead oxide for the improved performance of lithium ion batteries. Carbon 50:1355–1362

    Article  CAS  Google Scholar 

  28. Hansen B, Dryhurst G (1971) Electrochemical oxidation of theobromine and caffeine at the pyrolytic graphite electrode. J Electroanal Chem Interfacial Electrochem 30:407–416

    Article  Google Scholar 

  29. Amiri-Aref M, Raoof JB, Ojani R (2014) A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode. Sensors Actuators B Chem 192:634–641

    Article  CAS  Google Scholar 

  30. Fernandes DM, Silva N, Pereira C, Moura C, Magalhães JM, Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A, Delerue-Matos C, Freire C (2015) MnFe2O4@ CNT-N as novel electrochemical nanosensor for determination of caffeine, Acetaminophen and ascorbic acid. Sensors Actuators B Chem 218:128–136

    Article  CAS  Google Scholar 

  31. Lourencao BC, Medeiros RA, Rocha-Filho RC, Fatibello-Filho O (2010) Simultaneous Differential Pulse Voltammetric Determination of Ascorbic Acid and Caffeine in Pharmaceutical Formulations Using a Boron-Doped Diamond Electrode. Electroanalysis 22:1717–1723

    Article  CAS  Google Scholar 

  32. Zhang J, Wang LP, Guo W, Peng XD, Li M, Yuan ZB (2011) Sensitive differential pulse stripping voltammetry of caffeine in medicines and cola using a sensor based on multi-walled carbon nanotubes and nafion. Int J Electrochem Sci 6:997–1006

    CAS  Google Scholar 

  33. Lourencao BC, Medeiros RA, Rocha-Filho RC, Mazo LH, Fatibello-Filho O (2009) Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using a boron-doped diamond electrode. Talanta 78(3):748–752

    Article  CAS  Google Scholar 

  34. Brunetti B, Desimoni E, Casati P (2007) Determination of Caffeine at a Nafion-Covered Glassy Carbon Electrode. Electroanalysis 19:385–388

    Article  CAS  Google Scholar 

  35. Wang Y, Wu T, Bi CY (2016) Simultaneous determination of acetaminophen, theophylline and caffeine using a glassy carbon disk electrode modified with a composite consisting of poly (Alizarin Violet 3B), multiwalled carbon nanotubes and graphene. Microchim Acta 183: 731–739.

Download references

Acknowledgments

This project was supported by the Ministry of Science and Technology and the Ministry of Education of Taiwan (Republic of China). Authors express their sincere thanks to Dr. Selvakumar Palanisamy and Dr. Rajkumar Devasenathipathy for valuable help and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velmurugan, M., Karikalan, N., Chen, SM. et al. Core-shell like Cu2O nanocubes enfolded with Co(OH)2 on reduced graphene oxide for the amperometric detection of caffeine. Microchim Acta 183, 2713–2721 (2016). https://doi.org/10.1007/s00604-016-1914-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1914-4

Keywords

Navigation