Microchimica Acta

, Volume 183, Issue 10, pp 2697–2703

Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis

  • Subash C. B. Gopinath
  • Veeradasan Perumal
  • Ramanujam Kumaresan
  • Thangavel Lakshmipriya
  • Haarindraprasad Rajintraprasad
  • Balakrishnan S. Rao
  • M. K. Md Arshad
  • Yeng Chen
  • Norito Kotani
  • Uda Hashim
Original Paper

Abstract

The 16 kDa heat shock protein (16 kDa HSP) against Mycobacterium tuberculosis (MT), expressed during the growth phase of MT, is a potential target in diagnostic tests for tuberculosis (TB). We describe here a method for impedimetric determination of the antigen by using a nanogapped dielectric surface consisting of a silver support coated with a thin finger-shaped coating made from zinc oxide and gold and patterned through a lift-off process. The electrode was characterized by scanning electron microscopy, field emission scanning electron microscopy, atomic force microscopy, and energy-dispersive X-ray spectroscopy. Surface chemical functionalization and immobilization of antibody against the 16 kDa HSP was evidenced by FTIR. In order to improve the detection limit, the antigen was conjugated to 10 nm gold nanoparticles. The resulting biosensor is capable of detecting the 16 kDa HSP in concentrations as low as 100 fM. The method covers a wide analytical range that extends from 100 fM to 1 nM.

Graphical abstract

Schematic presentation of the nanogapped impedimetric immunosensor for the diagnosis of tuberculosis

Keywords

ZnO Gold Nanoparticle Gold surface Impedance Immunosensor Dielectric sensor Nanolayer Silicon wafer Surface chemistry Tubercle bacillus 

References

  1. 1.
    Naser SA, Thanigachalam S, Spinelli N (2013) The 19 kDa Protein from Mycobacterium avium subspecies paratuberculosis Is a Glycolipoprotein 2013:520–528.Google Scholar
  2. 2.
    Yuk JM, Jo EK (2014) Host immune responses to mycobacterial antigens and their implications for the development of a vaccine to control tuberculosis. Clin Exp Vaccine Res 3:155–167CrossRefGoogle Scholar
  3. 3.
    Caccamo N, Milano S, Di Sano C, Cigna D, Ivanyi J, Krensky AM, Dieli F, Salerno A (2002) Identification of epitopes of Mycobacterium tuberculosis 16-kDa protein recognized by human leukocyte antigen-A*0201 CD8(+) T lymphocytes. J Infect Dis 186:991–998CrossRefGoogle Scholar
  4. 4.
    Chan ED, Heifets L, Iseman MD (2000) Immunologic diagnosis of tuberculosis: a review. Tuber Lung Dis 80:131–140CrossRefGoogle Scholar
  5. 5.
    Senol G, Erer OF, Yalcin YA, Coskun M, Gündüz AT, Biçmen C, Ertas M, Özkan SA (2007) Humoral immune response against 38-kDa and 16-kDa mycobacterial antigens in tubercolosis. Eur Respir J 29:143–148CrossRefGoogle Scholar
  6. 6.
    Dhepakson P, Luengchaichaweng A, Pudprom S, Thongthai P, Balachandra K, Sawanpunyalert P (2008) Construction and production of 16 kDa antigen from Mycobacterium tuberculosis for the development of TB diagnostic test. Bull Chiang Mai Assoc Med Sci 41:204–213Google Scholar
  7. 7.
    Demissie A, Leyten EMS, Abebe M, Wassie L, Aseffa A, Abate G, Fletcher H, Owiafe P, Hill PC, Brookes R, Rook G, Zumla A, Arend SM, Klein M, Ottenhoff THM, Andersen P, Doherty TM (2006) Recognition of stage-specific mycobacterial antigens differentiates between acute and latent infections with Mycobacterium tuberculosis. Clin Vaccine Immunol 13:179–186CrossRefGoogle Scholar
  8. 8.
    Brennan PJ (2003) Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis 83:91–97CrossRefGoogle Scholar
  9. 9.
    Srivastava SK, Ruigrok VJB, Thompson NJ, Trilling AK, Heck AJR, van Rijn C, Beekwilder J, Jongsma MA (2013) 16 kDa Heat Shock Protein from Heat-Inactivated Mycobacterium tuberculosis Is a Homodimer - Suitability for Diagnostic Applications with Specific Llama VHH Monoclonals. PLoS One 8:e64040CrossRefGoogle Scholar
  10. 10.
    Chang Z, Primm TP, Jakana J, Lee IH, Serysheva I, Chiu W, Gilbert HF, Quiocho FA (1996) Mycobacterium tuberculosis 16-kDa antigen (Hsp16.3) Functions as an oligomeric structure in vitro to suppress thermal aggregation. J Biol Chem 271:7218–7223CrossRefGoogle Scholar
  11. 11.
    Pottumarthy S, Wells VC, Morris a J (2000) A comparison of seven tests for serological diagnosis of tuberculosis. J Clin Microbiol 38:2227–2231Google Scholar
  12. 12.
    Ger R (1964) Serological diagnosis of tuberculosis. Br Med J 2:327–328CrossRefGoogle Scholar
  13. 13.
    Khan SB, Karimov KS, Chani MTS, Asiri AM, Akhtar K, Fatima N (2015) Impedimetric sensing of humidity and temperature using CeO2–Co3O4 nanoparticles in polymer hosts. Microchim Acta 182:2019–2026CrossRefGoogle Scholar
  14. 14.
    Haarindraprasad R, Hashim U, Gopinath SCB, Veeradasan P, Liu WM, Balakrishnan SR (2016) Fabrication of Interdigitated High-performance Zinc Oxide Nanowire Modified Electrode for Glucose Sensing. Anal Chim Acta 925:70–81CrossRefGoogle Scholar
  15. 15.
    Singh R, Matharu Z, Srivastava AK, Sood S, Gupta RK, Malhotra BD (2012) Nanostructured platform for the detection of Neisseria gonorrhoeae using electrochemical impedance spectroscopy and differential pulse voltammetry. Microchim Acta 177:201–210CrossRefGoogle Scholar
  16. 16.
    Perumal V, Hashim U, Gopinath SCB, Haarindraprasad R, Poopalan P, Liu WW, Ravichandran M, Balakrishnan SR, Ruslinda AR (2016) A new nano-worm structure from gold nanoparticle mediated random curving of zinc oxide nanorods. Biosens Bioelectron 78:14–22CrossRefGoogle Scholar
  17. 17.
    Yang LY, Lei C, Sun X-C, Zhou Y (2016) ultrasensitive detection and quantification of E. coli O157:H7 using a giant magnetoimpedance sensor in an open-surface microfluidic cavity covered with an antibody-modified gold surface. Microchim Acta 183:1831–1837CrossRefGoogle Scholar
  18. 18.
    Jia F, Duan N, Wu S, Ma X, Yu X, Wang Z, Wei X (2014) Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Microchim Acta 181:967–974CrossRefGoogle Scholar
  19. 19.
    Lei P, Tang H, Ding S, Ding X, Zhu D, Shen B, Cheng Q, Yan Y (2015) Determination of the invA gene of Salmonella using surface plasmon resonance along with streptavidin aptamer amplification. Microchim Acta 182:289–296CrossRefGoogle Scholar
  20. 20.
    Chen Y, Jing Z (2016) Design and fabrication of clustered rugged ZnO nanotube films with condensate microdrop self-propelling function. Chem Commun (Camb) 52:7299–7301CrossRefGoogle Scholar
  21. 21.
    Aamdal Scheie A, Chamgordani EJ, Naemi AO, Hansen FK, Benneche T (2016) Staphylococcus epidermidis biofilm on implant material is reduced by covalently linked thiophenone. J Appl Microbiol. doi:10.1111/jam.13188 Google Scholar
  22. 22.
    Gopinath SCB, Anbu P, Lakshmipriya T, Hilda A (2013a) Strategies to characterize fungal lipases for applications in medicine and dairy industry. Biomed Res Int 2013:31–34CrossRefGoogle Scholar
  23. 23.
    Xiong J, Wang W, Zhou Y, Kong W, Wang Z, Fu Z (2016) Ultra-sensitive chemiluminescent detection of Staphylococcus aureus based on competitive binding of Staphylococcus protein A-modified magnetic beads to immunoglobulin G. Microchim Acta 183:1507–1512CrossRefGoogle Scholar
  24. 24.
    Alayo N, Fernández-Sánchez C, Baldi A, Esquivel JP, Borrisé X, Pérez-Murano F (2016) Gold interdigitated nanoelectrodes as a sensitive analytical tool for selective detection of electroactive species via redox cycling. Microchim Acta 183:1633–1639CrossRefGoogle Scholar
  25. 25.
    Li Y, Schluesener HJ, Xu S (2010) Gold nanoparticle-based biosensors. Gold Bull 43:29–41CrossRefGoogle Scholar
  26. 26.
    Lakshmipriya T, Horiguchi Y, Nagasaki Y (2014) Co-immobilized poly(ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma. Analyst 139:3977–3985CrossRefGoogle Scholar
  27. 27.
    Gopinath SCB, Awazu K, Fons P, Tominaga J, Kumar PKR (2009) A sensitive multilayered structure suitable for biosensing on the BioDVD platform. Anal Chem 81:4963–4970CrossRefGoogle Scholar
  28. 28.
    Smith EA, Chen W (2008) How to prevent the loss of surface functionality derived from aminosilanes. Langmuir 24:12405–12409CrossRefGoogle Scholar
  29. 29.
    Lakshmipriya T, Fujimaki M, Gopinath SCB, Awazu K, Horiguchi Y, Nagasaki Y (2013b) A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst 138:2863–2870CrossRefGoogle Scholar
  30. 30.
    Lakshmipriya T, Fujimaki M, Gopinath SCB, Awazu K (2013a) Generation of Anti-Influenza Aptamers Using the Systematic Evolution of Ligands by Exponential Enrichment for Sensing Applications. Langmuir 29:15107–15115CrossRefGoogle Scholar
  31. 31.
    Perumal V, Hashim U, Gopinath SCB, Haarindraprasad R, Poopalan P, Liu W-W, Ravichandran M, Balakrishnan SR, Ruslinda AR (2015b) A New Nano-worm Structure from Gold-nanoparticle Mediated Random Curving of Zinc Oxide Nanorods. Biosens Bioelectron 78:14–22CrossRefGoogle Scholar
  32. 32.
    Upadhyayula VKK (2012) Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta 715:1–18CrossRefGoogle Scholar
  33. 33.
    Rafati A, Gill P (2015) Microfluidic method for rapid turbidimetric detection of the DNA of Mycobacterium tuberculosis using loop-mediated isothermal amplification in capillary tubes. Microchim Acta 182:523–530CrossRefGoogle Scholar
  34. 34.
    Chen H, Liu F, Koh K, Lee J, Ye Z, Yin T, Sun L (2013) Sensitive detection of tuberculosis using nanoparticle-enhanced surface plasmon resonance. Microchim Acta 180:431–436CrossRefGoogle Scholar
  35. 35.
    Liu L, Xiang G, Jiang D, Du C, Liu C, Huang W, Pu X (2016) Electrochemical gene sensor for Mycoplasma pneumoniae DNA using dual signal amplification via a Pt@Pd nanowire and horse radish peroxidase. Microchim Acta 183:379–387CrossRefGoogle Scholar
  36. 36.
    Fei J, Dou W, Zhao G (2015) A sandwich electrochemical immunosensor for Salmonella pullorum and Salmonella gallinarum based on a screen-printed carbon electrode modified with an ionic liquid and electrodeposited gold nanoparticles. Microchim Acta 182:2267–2275CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Subash C. B. Gopinath
    • 1
    • 2
  • Veeradasan Perumal
    • 1
  • Ramanujam Kumaresan
    • 3
  • Thangavel Lakshmipriya
    • 1
  • Haarindraprasad Rajintraprasad
    • 1
  • Balakrishnan S. Rao
    • 1
  • M. K. Md Arshad
    • 1
  • Yeng Chen
    • 4
    • 5
  • Norito Kotani
    • 3
  • Uda Hashim
    • 1
  1. 1.Institute of Nano Electronic EngineeringUniversiti Malaysia PerlisKangarMalaysia
  2. 2.School of Bioprocess EngineeringUniversiti Malaysia PerlisArauMalaysia
  3. 3.Research Institute of Biomolecule Metrology Company Ltd.TsukubaJapan
  4. 4.Department of Oral & Craniofacial Sciences, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
  5. 5.Oral Cancer Research & Coordinating Center (OCRCC), Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations