Skip to main content
Log in

Chitosan-coated hemoglobin microcapsules for use in an electrochemical sensor and as a carrier for oxygen

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The article describes the preparation of chitosan-coated hemoglobin (Hb-CS) microcapsules by (a) preparing a CaCO3 precipitate containing Hb, (b) crosslinking Hb with glutaraldehye, (c) coating the particles with chitosan, and (d) preparing Hb-CS microcapsules by removing the CaCO3 template with a solution of disodium EDTA. The morphology and electrochemical properties of the Hb-CS microcapsules were investigated by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. An oxygen sensor was obtained by immobilizing the Hb-CS microcapsules on the surface of a glassy carbon electrode (GCE) first modified with gold nanoparticles. The application of Hb-CS microcapsules facilitates electron transfer on the surface of GCE and warrants the integrity and biological activity of Hb. The oxygen sensor, operated best at a working voltage of −0.335  V (vs. SCE), displays a low limit of detection (30 nM). The Hb-CS microcapsules also are shown to release loaded oxygen to an anaerobic aqueous environment within 300 min.

The hemoglobin-chitosan microcapsule shows an excellent ability of electrocatalysis and carrying of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, Zaher W, Mortensen LJ, Alt C, Turcotte R, Yusuf R, Côté D, Vinogradov SA, Scadden DT, Lin CP (2014) Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508:269–273

    Article  CAS  Google Scholar 

  2. Tong LY, Chuang CC, SY W, Zuo L (2015) Reactive oxygen species in redox cancer therapy. Cancer Lett 367:18–25

    Article  CAS  Google Scholar 

  3. Aicha A, Freundlicha M, Vekilova PG (2015) The free heme concentration in healthy human erythrocytes. Blood Cell Mol Dis 55:402–4094

    Article  Google Scholar 

  4. Fei HL, Ye RQ, Ye GL, Gong YJ, Peng ZW, Fan XJ, Samuel ELG, Ajayan PM, Tour JM (2014) Boron- and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction. ACS Nano 8:10837–10843

    Article  CAS  Google Scholar 

  5. Lv XH, Ma HM, Wu D, Yan T, Ji L, Liu YX, Pang XH, Du B, Wei Q (2016) Novel gold nanocluster electrochemiluminescence immunosensors based on nanoporous NiGd-Ni2O3-Gd2O3 alloys. Biosens Bioelectron 75:142–147

    Article  CAS  Google Scholar 

  6. Li YX, Liu ZC, Xie JP, Li LL, MQ F, Zhou J (2015) A nanocomposite with core-shell structure for site-specific oxygen sensing: Synthesis, characterization, photophysical feature and sensing performance. Sens Actuators B Chem 221:312–319

    Article  CAS  Google Scholar 

  7. Pita M, Sanchez CG, Toscano MD, Shleev S, Lacey ALD (2013) Oxygen biosensor based on bilirubin oxidase immobilized on a nanostructured gold electrode. Bioelectrochem 94:69–74

    Article  CAS  Google Scholar 

  8. Zheng J, Guo CZ, Chen CY, Fan MZ, Gong JP, Zhang YF, Zhao TX, Sun YL, Xu XF, Li MM, Wang R, Luo ZL, Chen CG (2015) High content of pyridinic- and pyrrolic-nitrogen-modified carbon nanotubes derived from blood biomass for the electrocatalysis of oxygen reduction reaction in alkaline medium. Electrochim Acta 168:386–393

    Article  CAS  Google Scholar 

  9. Rezende EL (2013) Better oxygen delivery, vol 340. Science, pp. 1293–1294

  10. Saadati S, Salimi A, Hallaj R, Rostami A (2014) Direct electron transfer and electrocatalytic properties of immobilized hemoglobin onto glassy carbon electrode modified with ionic-liquid/titanium-nitride nanoparticles: application to nitrite detection. Sens Actuators B Chem 191:625–633

    Article  CAS  Google Scholar 

  11. Ahn KS, Lee JH, Park JM, Choi HN, Lee WY (2016) Luminol chemiluminescence biosensor for glycated hemoglobin (HbA1c) in human blood samples. Biosens Bioelectron 75:82–87

    Article  CAS  Google Scholar 

  12. Bai J, LP W, Wang XJ, Zhang HM (2015) Hemoglobin-graphene modified carbon fiber microelectrode for direct electrochemistry and electrochemical H2O2 sensing. Electrochim Acta 185:142–147

    Article  CAS  Google Scholar 

  13. Liu Y, Gong J, Wu W, Fang Y, Wang Q, Gu H (2016) A novel bio-nanocomposite based on hemoglobin and carboxy grapheme for enhancing the ability of carrying oxygen. Sens Actuators B Chem 222:588–597

    Article  CAS  Google Scholar 

  14. Zhan T, Wang X, Li X, Song Y, Hou W (2016) Hemoglobin immobilized in exfoliated Co2Al LDH-graphene nanocomposite film: Direct electrochemistry and electrocatalysis toward trichloroacetic acid. Sens Actuators B Chem 228:101–108

    Article  CAS  Google Scholar 

  15. Suprun EV, Shumyantseva VV, Archakov AI (2014) Protein electrochemistry: Application in Medicine A Review. Electrochim Acta 140:72–82

    Article  CAS  Google Scholar 

  16. Hu Y, Sun H, Hu NF (2007) Assembly of layer-by-layer films of electroactive hemoglobin and surfactant didodecyldimethylammonium bromide. J Colloid Interface Sci 314:131–140

    Article  CAS  Google Scholar 

  17. Koder RL, Ross Anderson JL, Solomon LA, Reddy KS, Moser CC, Leslie Dutto P (2009) Design and engineering of an O2 transport protein. Nature 458:305–309

    Article  CAS  Google Scholar 

  18. RF X, Zhang JW, Zhou PH, Yang R, Feng XY, Xu LX (2015) A novel artificial red blood cell substitute: grafted starch-encapsulated hemoglobin. RSC Adv 5:43845–43853

    Article  Google Scholar 

  19. Squires J E (2002) Artificial blood. Science 295:1002–1005

  20. Wang YH, Guo JW, Gu HY (2010) A novel nano-sized bionic function interface for enhancing the ability of red blood cells to carry oxygen. Microchim Acta 171:179–186

    Article  CAS  Google Scholar 

  21. Duan L, Yan X, Wang A, Jia Y, Li JB (2012) Highly loaded hemoglobin spheres as promising artificial oxygen carriers. ACS Nano 6:6897–6904

    Article  CAS  Google Scholar 

  22. Liu Y, She P, Gong J, Wu WP, Xu SM, Li JG, Zhao K, Deng AP (2015) A novel sensor based on electrodeposited Au-Pt bimetallic nano-clusters decorated on graphene oxide (GO)-electrochemically reduced GO for sensitive detection of dopamine and uric acid. Sensors Actuators B Chem 221:1542–1553

    Article  CAS  Google Scholar 

  23. Liu Y, Zhou J, Gong J, WP W, Pan ZQ, Gu HY (2013) The investigation of electrochemical properties for Fe3O4@Pt nanocomposites and an enhancement sensing for nitrite. Electrochim Acta 111:876–887

    Article  CAS  Google Scholar 

  24. Kamin RA, Wilson GS (1980) Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 52:1198–1205

    Article  CAS  Google Scholar 

  25. Liu Y, Han T, Chen C, Bao N, Yu CM, Gu HY (2011) A novel platform of hemoglobin on core-shell structurally Fe3O4@Au nanoparticles and its direct electrochemistry. Electrochim Acta 56:3248–3257

    Article  Google Scholar 

  26. Taniguchi VT, Sailasuta-Scott N, Anson FC, Gray HB (1980) Thermodynamics of metallo protein electron transfer reactions. Pure Appl Chem 52:2275–2281

    Article  CAS  Google Scholar 

  27. Gu HY, Yu AM, Chen HY (2001) Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode. J Electroanal Chem 516:119–126

    Article  CAS  Google Scholar 

  28. Haghighi B, Bozorgzadeh S (2011) Enhanced electrochemiluminescence from luminol at multi-walled carbon nanotubes decorated with palladium nanoparticles: A novel route for the fabrication of an oxygen sensor and a glucose biosensor. Anal Chim Acta 697:90–97

    Article  CAS  Google Scholar 

  29. Wang XD, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43:3666–3761

    Article  CAS  Google Scholar 

  30. Lin ZY, Liu Y, Chen GN (2008) TiO2/Nafion film based electrochemiluminescence for detection of dissolved oxygen. Electrochem Commun 10:1629–1632

    Article  CAS  Google Scholar 

  31. Zheng RJ, Fang YM, Qin SF, Song J, Wu AH, Sun JJ (2011) A dissolved oxygen sensor based on hot electron induced cathodic electrochemiluminescence at a disposable CdS modified screen-printed carbon electrode. Sensors Actuators B Chem 157:488–493

    Article  CAS  Google Scholar 

  32. Luo W, Abbas ME, Zhu LH, Zhou WY, Li KJ, Tang HQ, Liu SS, Li WY (2009) A simple fluorescent probe for the determination of dissolved oxygen based on the catalytic activation of oxygen by iron(II) chelates. Anal Chim Acta 640:63–67

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (NSFC, Nos. 21075087, 21175097, 81202249 and 21375066) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianguo Li or Anping Deng.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic Supplementary Material

ESM 1

(DOCX 293 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, Q., She, P. et al. Chitosan-coated hemoglobin microcapsules for use in an electrochemical sensor and as a carrier for oxygen. Microchim Acta 183, 2847–2854 (2016). https://doi.org/10.1007/s00604-016-1908-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1908-2

Keywords

Navigation