Microchimica Acta

, Volume 183, Issue 8, pp 2411–2419 | Cite as

Electromembrane extraction and anodic stripping voltammetric determination of mercury(II) using a glassy carbon electrode modified with gold nanoparticles

Original Paper

Abstract

This study presents a method for the selective determination of Hg(II) using electromembrane extraction (EME), followed by square wave anodic stripping voltammetry (SWASV), using a gold nanoparticle-modified glassy carbon electrode, (AuNP/GCE). By applying an electrical potential of typically 60 V for 12 min through a thin supported liquid membrane (1-octanol), Hg(II) ions are extracted from a donor phase (i.e., the sample solution) to an acidic acceptor solution (15 μL) placed in the lumen of a hollow fiber. The influences of experimental parameters during EME were optimized using face-centered central composite design. The calibration plot, established at a working voltage of 0.55 V (vs. Ag/AgCl), extends from 0.2 to 10 μg.L−1 of Hg(II). The limit of detection, at a signal to noise ratio of 3, is 0.01 μg.L−1 and the relative standard deviations (for 5 replicate determinations at 3 concentration levels) are between 7.5 and 8.7 %. The method was successfully applied to the determination of Hg(II) in spiked real water samples to give recoveries ranging from 89 to 97 %. The results were validated by cold vapor atomic absorption spectroscopy.

Graphical abstract

Hg(II) ions were extracted from a donor phase into an acidic acceptor phase (15 μL) placed in the lumen of a hollow fiber using electromembrane extraction. The acceptor phase was then analyzed using anodic stripping voltammetry.

Keywords

Square wave anodic stripping voltammetry Single-drop voltammetry Face-centered central composite design Porous hollow fiber FE-SEM 

Notes

Acknowledgments

The authors wish to express their gratitude to the University of Zanjan Research Council for support of this work.

Compliance with Ethical Standards

The author(s) declare that they have no competing interests

Supplementary material

604_2016_1884_MOESM1_ESM.docx (515 kb)
ESM 1(DOCX 514 kb)

References

  1. 1.
    Rofouei MK, Sabouri A, Ahmadalinezhad A, Ferdowsi H (2011) Solid phase extraction of ultra traces mercury (II) using octadecyl silica membrane disks modified by 1, 3-bis (2-ethoxyphenyl) triazene (EPT) ligand and determination by cold vapor atomic absorption spectrometry. J Hazard Mater 192(3):1358–1363CrossRefGoogle Scholar
  2. 2.
    Allibone J, Fatemian E, Walker PJ (1999) Determination of mercury in potable water by ICP-MS using gold as a stabilising agent. J Anal At Spectrom 14(2):235–239CrossRefGoogle Scholar
  3. 3.
    Abu-Shawish HM (2009) A mercury (II) selective sensor based on N, N′-bis (salicylaldehyde)-phenylenediamine as neutral carrier for potentiometric analysis in water samples. J Hazard Mater 167(1):602–608CrossRefGoogle Scholar
  4. 4.
    Jagner D, Josefson M, Årén K (1982) Flow potentiometric stripping analysis for mercury (II). Anal Chim Acta 141:147–156CrossRefGoogle Scholar
  5. 5.
    Wen J, Cassidy RM (1996) Anodic and cathodic pulse amperometric detection of metal ions separated by capillary electrophoresis. Anal Chem 68(6):1047–1053CrossRefGoogle Scholar
  6. 6.
    Sipos L, Nürnberg H, Valenta P, Branica M (1980) The reliable determination of mercury traces in sea water by subtractive differential pulse voltammetry at the twin gold electrode. Anal Chim Acta 115:25–42CrossRefGoogle Scholar
  7. 7.
    Meyer S, Scholz F, Trittler R (1996) Determination of inorganic ionic mercury down to 5× 10–14 mol l − 1 by differential-pulse anodic stripping voltammetry. Fresenius J Anal Chem 356(3–4):247–252Google Scholar
  8. 8.
    Salaün P, van den Berg CM (2006) Voltammetric detection of mercury and copper in seawater using a gold microwire electrode. Anal Chem 78(14):5052–5060CrossRefGoogle Scholar
  9. 9.
    Razmi H, Musevi SJ, Mohammad-Rezaei R (2015) Solid phase extraction of mercury (II) using soluble eggshell membrane protein doped with reduced graphene oxide, and its quantitation by anodic stripping voltammetry. Microchimica Acta:1–8Google Scholar
  10. 10.
    Zhou N, Chen H, Li J, Chen L (2013) Highly sensitive and selective voltammetric detection of mercury (II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles. Microchim Acta 180(5–6):493–499CrossRefGoogle Scholar
  11. 11.
    Pinilla J, Hernandez L, Conesa A (1996) Determination of mercury by open circuit adsorption stripping voltammetry on a platinum disk electrode. Anal Chim Acta 319(1):25–30CrossRefGoogle Scholar
  12. 12.
    Bonfil Y, Brand M, Kirowa-Eisner E (2000) Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode. Anal Chim Acta 424(1):65–76CrossRefGoogle Scholar
  13. 13.
    Viltchinskaia E, Zeigman L, Garcia D, Santos P (1997) Simultaneous determination of mercury and arsenic by anodic stripping voltammetry. Electroanalysis 9(8):633–640CrossRefGoogle Scholar
  14. 14.
    Daniele S, Bragato C, Baldo MA, Wang J, Lu J (2000) The use of a remote stripping sensor for the determination of copper and mercury in the lagoon of Venice. Analyst 125(4):731–735CrossRefGoogle Scholar
  15. 15.
    Garnier C, Lesven L, Billon G, Magnier A, Mikkelsen Ø, Pižeta I (2006) Voltammetric procedure for trace metal analysis in polluted natural waters using homemade bare gold-disk microelectrodes. Anal Bioanal Chem 386(2):313–323CrossRefGoogle Scholar
  16. 16.
    Ordeig O, Banks CE, del Campo J, Muñoz FX, Compton RG (2006) Trace detection of mercury (II) using gold ultra-microelectrode arrays. Electroanalysis 18(6):573–578CrossRefGoogle Scholar
  17. 17.
    Gao X, Wei W, Yang L, Yin T, Wang Y (2005) Simultaneous determination of lead, copper, and mercury free from macromolecule contaminants by square wave stripping voltammetry. Anal Lett 38(14):2327–2343CrossRefGoogle Scholar
  18. 18.
    Kjelsen IJØ, Gjelstad A, Rasmussen KE, Pedersen-Bjergaard S (2008) Low-voltage electromembrane extraction of basic drugs from biological samples. J Chromatogr A 1180(1):1–9CrossRefGoogle Scholar
  19. 19.
    Gjelstad A, Rasmussen KE, Pedersen-Bjergaard S (2009) Electromembrane extraction of basic drugs from untreated human plasma and whole blood under physiological pH conditions. Anal Bioanal Chem 393(3):921–928CrossRefGoogle Scholar
  20. 20.
    Kiplagat IK, Doan TKO, Kubáň P, Boček P (2011) Trace determination of perchlorate using electromembrane extraction and capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis 32(21):3008–3015CrossRefGoogle Scholar
  21. 21.
    Basheer C, Tan SH, Lee HK (2008) Extraction of lead ions by electromembrane isolation. J Chromatogr A 1213(1):14–18CrossRefGoogle Scholar
  22. 22.
    Kubáň P, Strieglerová L, Gebauer P, Boček P (2011) Electromembrane extraction of heavy metal cations followed by capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis 32(9):1025–1032CrossRefGoogle Scholar
  23. 23.
    Safari M, Nojavan S, Davarani SSH, Morteza-Najarian A (2013) Speciation of chromium in environmental samples by dual electromembrane extraction system followed by high performance liquid chromatography. Anal Chim Acta 789:58–64CrossRefGoogle Scholar
  24. 24.
    Gao F, El-Deab MS, Okajima T, Ohsaka T (2005) Electrochemical preparation of a Au crystal with peculiar morphology and unique growth orientation and its catalysis for oxygen reduction. J Electrochem Soc 152(6):A1226–A1232CrossRefGoogle Scholar
  25. 25.
    El-Deab MS, Sotomura T, Ohsaka T (2005) Size and crystallographic orientation controls of gold nanoparticles electrodeposited on GC electrodes. J Electrochem Soc 152(1):C1–C6CrossRefGoogle Scholar
  26. 26.
    Hezard T, Fajerwerg K, Evrard D, Collière V, Behra P, Gros P (2012) Influence of the gold nanoparticles electrodeposition method on Hg (II) trace electrochemical detection. Electrochim Acta 73:15–22CrossRefGoogle Scholar
  27. 27.
    Basheer C, Lee J, Pedersen-Bjergaard S, Rasmussen KE, Lee HK (2010) Simultaneous extraction of acidic and basic drugs at neutral sample pH: a novel electro-mediated microextraction approach. J Chromatogr A 1217(43):6661–6667CrossRefGoogle Scholar
  28. 28.
    Balchen M, Gjelstad A, Rasmussen KE, Pedersen-Bjergaard S (2007) Electrokinetic migration of acidic drugs across a supported liquid membrane. J Chromatogr A 1152(1):220–225CrossRefGoogle Scholar
  29. 29.
    Seidi S, Yamini Y, Rezazadeh M, Esrafili A (2012) Low-voltage electrically-enhanced microextraction as a novel technique for simultaneous extraction of acidic and basic drugs from biological fluids. J Chromatogr A 1243:6–13CrossRefGoogle Scholar
  30. 30.
    Guideline IHT (2005) Validation of analytical procedures: text and methodology. Q2 (R1) 1Google Scholar
  31. 31.
    Hezard T, Fajerwerg K, Evrard D, Collière V, Behra P, Gros P (2012) Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: application to Hg (II) trace analysis. J Electroanal Chem 664:46–52CrossRefGoogle Scholar
  32. 32.
    Lin Y, Peng Y, Di J (2015) Electrochemical detection of Hg (II) ions based on nanoporous gold nanoparticles modified indium tin oxide electrode. Sensors Actuators B Chem 220:1086–1090CrossRefGoogle Scholar
  33. 33.
    Alves GM, Magalhães JM, Salaün P, Van den Berg CM, Soares HM (2011) Simultaneous electrochemical determination of arsenic, copper, lead and mercury in unpolluted fresh waters using a vibrating gold microwire electrode. Anal Chim Acta 703(1):1–7CrossRefGoogle Scholar
  34. 34.
    Jovanovski V, Hrastnik N, Hočevar S (2015) Copper film electrode for anodic stripping voltammetric determination of trace mercury and lead. Electrochem Commun 57:1–4CrossRefGoogle Scholar
  35. 35.
    Perone S, Kretlow WJ (1965) Anodic stripping voltammetry of mercury (II) at the graphite electrode. Anal Chem 37(8):968–970CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of ZanjanZanjanIran

Personalised recommendations