Skip to main content

‘Green’ immunochromatographic electrochemical biosensor for mercury(II)

Abstract

We describe an immunochromatographic electrochemical biosensor (IEB) for highly specific and sensitive determination of Hg(II) ions. The IEB is based on the use of a new monoclonal antibody (McAb) against Hg(II) ions that affects the recognition of an antigen. The McAb is placed on the surface of gold nanoparticles (AuNPs) and can recognize the antigen only in the absence of Hg(II) ions. This detection scheme was used to design an immunochromatographic test strip using dually labeled AuNPs along with electrochemical detection. Signal amplification was accomplished by a competitive reaction and the use of horseradish peroxidase. Following immunochromatography, the test zone was cut out and transferred into a reaction cell loaded with a substrate solution containing ortho-phenylenediamine and H2O2. After 10-min incubation with horseradish peroxidase, square wave voltammetry was performed with a screen-printed electrode. Under optimal conditions and a working voltage of −0.57 V, the IEB displays a linear response in the 0.1 to 200 ng.mL−1 Hg(II) concentration range and a 30 pg.mL−1 limit of detection. It was applied to the determination of Hg(II) in (spiked) waters and milk where its sensitivity by far surpassed the maximum allowed contamination levels. This sensitive IEB therefore possesses substantial advantages over other assays. In addition, the detection scheme may be extended to other metal ions for which appropriate antibodies are available.

We developed an immunochromatographic electrochemical biosensor (IEB) for highly specific and sensitive determination of Hg(II) ions in water and milk by using a new anti-Hg2+ monoclonal antibody (McAb). The linear range and limit of detection is 0.1–200 ng·mL−1 and 30 pg.mL−1, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Esteban-Fernandez D, Mirat M, Ignacia Martin de la Hinojosa M, Garcia Alonso JI (2012) Double spike isotope dilution GC-ICP-MS for evaluation of mercury species transformation in real fish samples using ultrasound-assisted extraction. J Agric Food Chem 60:8333–8339

  2. Xue XJ, Wang F, Liu XG (2008) One-step, room temperature, colori-metric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J Am Chem Soc 130:3244–3245

    CAS  Article  Google Scholar 

  3. Zhang J, Shi PW, Yan PP, Wang MB, Tang QH, Cai FD, Deng AP, Li JG (2015) Quantum dots based electrochemiluminescent immunosensor for ultrasensitive and specific determination of mercury (II) ions using gold nanoparticles and a monoclonal antibody. J Electrochem Soc 162:B22–B26

    CAS  Article  Google Scholar 

  4. Wang QR, Kim D, Dionysiou DD, Sorial GA, Timberlake D (2004) Sources and remediation for mercury contamination in aquatic systems-a literature review. Environ Pollut 131:323–336

    Article  Google Scholar 

  5. Cai FD, Zhu Q, Zhao K, Deng AP, Li JG (2015) Multiple signal amplified electrochemiluminescent immunoassay for Hg2+ using graphene-coupled quantum dots and gold nanoparticles-labeled horseradish peroxidase. Environ Sci Technol 49:5013–5020

    CAS  Article  Google Scholar 

  6. China (2012) Maximum levels of contaminants in foods. GB-2762-2012

  7. Tseng CM, Diego AD, Martin FM, Amouroux D, Donard OFX (1997) Rapid determination of inorganic mercury and methylmercury in biological reference materials by hydride generation, cryofocusing, atomic absorption spectrometry after open focused microwave-assisted alkaline digestion. J Anal Atomic Spectrom 12:743–750

    CAS  Article  Google Scholar 

  8. Yu LP (2005) Cloud point extraction preconcentration prior to high-performance liquid chromatography coupled with cold vapor generation atomic fluorescence spectrometry for speciation analysis of mercury in fish samples. J Agric Food Chem 53:9656–9662

    CAS  Article  Google Scholar 

  9. Leopold K, Foulkes M, Worsfold PJ (2009) Gold-coated silica as a preconcentration phase for the determination of total dissolved mercury in natural waters using atomic fluorescence spectrometry. Anal Chem 81:3421–3428

    CAS  Article  Google Scholar 

  10. Yu YL, Du Z, Wang JH (2007) The development of a miniature atomic fluorescence spectrometric system in a lab-on-valve for mercury determination. J Anal Atomic Spectrom 22:650–656

    CAS  Article  Google Scholar 

  11. Fong BMW, Siu TS, Lee JSK, Tam S (2007) Determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometry. J Anal Toxicol 31:281–287

    CAS  Article  Google Scholar 

  12. Liu HW, Jiang SJ, Liu SH (1999) Determination of cadmium, mercury and lead in seawater by electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry. Spectrochim Acta Part B-Atomic Spectrosc 54:1367–1375

    Article  Google Scholar 

  13. Ye BC, Yin BC (2008) Highly sensitive detection of mercury (II) ions by fluorescence polarization enhanced by gold nanoparticles. Angew Chem Int Ed 47:8386–8389

    CAS  Article  Google Scholar 

  14. Zhan XJ, Xi T, Zhou P (2013) Indirect competitive immunoassay for mercury ion determination using polyclonal antibody against the Hg-GSH complex. Environ Forensic 14:103–108

    CAS  Article  Google Scholar 

  15. Yang NJ, Wan QJ, Yu JH (2005) Adsorptive voltammetry of Hg(II) ions at a glassy carbon electrode coated with electropolymerized methyl-red film. Sensors Actuators B 110:246–251

    CAS  Article  Google Scholar 

  16. Wei Y, Yang R, Liu JH, Huang XJ (2013) Selective detection toward Hg (II) and Pb (II) using polypyrrole/carbonaceous nanospheres modified screen-printed electrode. Electrochim Acta 105:218–223

    CAS  Article  Google Scholar 

  17. Ono A, Togashi H (2004) Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew Chem Int Ed 43:4300–4302

    CAS  Article  Google Scholar 

  18. Chiang CK, Huang CC, Liu CW, Chang HT (2008) Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury (II) in aqueous solution. Anal Chem 80:3716–3721

    CAS  Article  Google Scholar 

  19. Zhang J, Tang Y, Lv J, Fang SQ, Tang DP (2015) Glucometer-based quantitative determination of Hg (II) using gold particle encapsulated invertase and strong thymine-Hg (II)-thymine interaction for signal amplification. Microchim Acta 182:1153–1159

    CAS  Article  Google Scholar 

  20. Xu LG, Yin HH, Ma W, Kuang H, Wang LB, Xu CL (2015) Ultrasensitive SERS detection of mercury based on the assembled gold nanochains. Biosens Bioelectron 67:472–476

    CAS  Article  Google Scholar 

  21. Wu XL, Tang LJ, Ma W, Xu LG, Liu LQ, Kuang H, Xu CL (2015) SERS-active Au NR oligomer sensor for ultrasensitive detection of mercury ions. RSC Adv 5:81802–81807

    CAS  Article  Google Scholar 

  22. Ma W, Sun MZ, Xu LG, Wang LB, Kuang H, Xu CL (2013) A SERS active gold nanostar dimer for mercury ion detection. Chem Commun 49:4989–4991

    CAS  Article  Google Scholar 

  23. Zhu YY, Xu LG, Ma W, Xu Z, Kuang H, Wang LB, Xu CL (2012) A one-step homogeneous plasmonic circular dichroism detection of aqueous mercury ions using nucleic acid functionalized gold nanorods. Chem Commun 48:11889–11891

    CAS  Article  Google Scholar 

  24. Liu F, Wang SM, Zhang M, Wang YH, Ge SG, Yu JH, Yan M (2014) Aptamer based test stripe for ultrasensitive detection of mercury(II) using a phenylene-ethynylene reagent on nanoporous silver as a chemiluminescence reagent. Microchim Acta 181:663–670

    CAS  Article  Google Scholar 

  25. Chen YJ, Yao L, Deng Y, Pan DD, Ogabiela E, Cao JX, Adeloju SB, Chen W (2015) Rapid and ultrasensitive colorimetric detection of mercury(II) by chemically initiated aggregation of gold nanoparticles. Microchim Acta 182:2147–2154

    CAS  Article  Google Scholar 

  26. Ding H, Li HW, Liu PC, Hiltunen JK, Wu YQ, Chen ZJ, Shen JC (2014) Templated in-situ synthesis of gold nanoclusters conjugated to drug target bacterial enoyl-ACP reductase, and their application to the detection of mercury ions using a test stripe. Microchim Acta 181:1029–1034

    CAS  Article  Google Scholar 

  27. Xing CR, Liu LQ, Zhang X, Kuang H, Xu CL (2014) Colorimetric detection of mercury based on a strip sensor. Anal Methods 6:6247–6253

    CAS  Article  Google Scholar 

  28. Zhu XX, Hu BS, Lou Y, Xu LN, Yang FL, Yu HN, Blake DA, Liu FQ (2007) Characterization of monoclonal antibodies for lead − chelate complexes: applications in antibody-based assays. J Agric Food Chem 55:4993–4998

    CAS  Article  Google Scholar 

  29. Xiang JJ, Zhai YF, TangY WH, Liu B, Guo CW (2010) A competitive indirect enzyme-linked immunoassay for lead ion measurement using mAbs against the lead-DTPA complex. Environ Pollut 158:1376–1380

    CAS  Article  Google Scholar 

  30. Liu FQ, Lou Y, Shi XY, Wang HM, Zhu XX (2013) Preparation and characterization of monoclonal antibody specific for copper–chelate complex. J Immunol Methods 387:228–236

    CAS  Article  Google Scholar 

  31. Wang YZ, Yang H, Pschenitza M, Niessner R, Li Y, Knopp D, Deng AP (2012) Highly sensitive and specific determination of mercury(II) ion in water, food and cosmetic samples with an ELISA based on a novel monoclonal antibody. Anal Bioanal Chem 403:2519–2528

    CAS  Article  Google Scholar 

  32. Kong T, Hao XQ, Li XB, Liu GW, Zhang ZG, Yang ZJ, Wang Z, Tang J, Yang W, Sun J (2013) Preparation of novel monoclonal antibodies against chelated cadmium ions. Biol Trace Elem Res 152:117–124

    CAS  Article  Google Scholar 

  33. Kong T, Liu GW, Li XB, Wang Z, Zhang ZG, Xie GH, Zhang Y, Sun J, Xu C (2010) Synthesis and identification of artificial antigens for cadmium and copper. Food Chem 123:1204–1209

    CAS  Article  Google Scholar 

  34. Wang LM, Lu DL, Wang J, Du D, Zou ZX, Wang H, Smith JN, Timchalk C, Liu FQ, Lin YH (2011) A novel immunochromatographic electrochemical biosensor for highly sensitive and selective detection of trichloropyridinol, a biomarker of exposure to chlorpyrifos. Biosens Bioelectron 26:2835–2840

    CAS  Article  Google Scholar 

  35. López_Marzo AM, Pons J, Blake DA, Merkoçi A (2013) High sensitive gold-nanoparticle based lateral flow immunodevice for Cd2+ detection in drinking waters. Biosens Bioelectron 47:190–198

  36. Luo YH, Xu LL, Liang AH, Deng AP, Jiang ZL (2014) A highly sensitive resonance rayleigh scattering assay for detection of Hg(II) using immunonanogold as probe. RSC Adv 4:19234–19237

    CAS  Article  Google Scholar 

  37. Li YS, Zhou Y, Meng XY, Zhang YY, Liu JQ, Zhang Y, Wang NN, Hu P, Lu SY, Ren HL, Liu ZS (2014) Enzyme–antibody dual labeled gold nanoparticles probe for ultrasensitive detection of κ-casein in bovine milk samples. Biosens Bioelectron 61:241–244

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31401771), the Natural Science Foundation of Jiangsu Province (BK20140685) and the National High Technology Research and Development Program of China (2012AA101401-1, 2013AA065601).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Limin Wang or Fengquan Liu.

Additional information

Yulong Wang and Limin Wang are authors contributed equally to this work.

Electronic Supplementary Material

ESM 1

(DOC 1681 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, L., Wang, S. et al. ‘Green’ immunochromatographic electrochemical biosensor for mercury(II). Microchim Acta 183, 2509–2516 (2016). https://doi.org/10.1007/s00604-016-1866-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1866-8

Keywords

  • Test stripe
  • Immunochromatography
  • Lateral flow assay
  • Heavy metal
  • Stripping wave voltammetry