Skip to main content

Advertisement

Log in

Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a hybrid material that consists of molybdenum sulfide flowers placed on graphene nanosheets and multiwalled carbon nanotubes (GNS-CNTs/MoS2). It was deposited on a glassy carbon electrode (GCE) which then is well suited for sensitive and selective determination of dopamine. The GNS-CNTs/MoS2 nanocomposite was prepared by a hydrothermal method and characterized by scanning electron and transmission emission microscopies, energy-dispersive X-ray spectroscopy, cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy. Electrochemical studies show the composite to possess excellent electrochemical properties such as a large electrochemically active surface, high capacitance current, a wide potential window, high conductivity and large porosity. The electrode displays excellent electrocatalytic ability to oxidize dopamine. The modified GCE, best operated at a working potential as low as 0.15 V (vs. Ag/AgCl), responds linearly to dopamine in the 100 nM to 100 μM concentration range. The detection limit is 50 nM, and the sensitivity is 10.81 (± 0.26) μA⋅μM−1⋅cm−2. The sensor has good selectivity, appreciable stability, repeatability and reproducibility. It was applied to the determination of dopamine in (spiked) biological and pharmaceutical samples.

A sensitive and selective dopamine sensor was developed using molybdenum disulfide flowers decorated graphene and multiwalled carbon nanotubes composite. The linear range of the sensor is from 100 nM to 100 μM, and detection limit is 50 nM

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11(4):889–892

    Article  CAS  Google Scholar 

  2. Ponnusamy VK, Mani V, Chen S-M, Huang W-T, Jen J (2014) Rapid microwave assisted synthesis of graphene nanosheets/polyethyleneimine/gold nanoparticle composite and its application to the selective electrochemical determination of dopamine. Talanta 120:148–157

    Article  CAS  Google Scholar 

  3. Düby SE, Cotzias GC, Papavasiliou PS, Lawrence WH (1972) Injected apomorphine and orally administered levodopa in parkinsonism. Arch Neurol 27(6):474–480

    Article  Google Scholar 

  4. Small SA, Petsko GA (2015) Retromer in Alzheimer disease, Parkinson disease and other neurological disorders. Nat Rev Neurosci 16(3):126–32

  5. Kalia LV, Lang AE (2016) Parkinson disease in 2015: evolving basic, pathological and clinical concepts in PD. Nat Rev Neurol12:65–66

  6. Brooks DJ (2012) Parkinson’s disease: diagnosis. Parkinsonism Relat Disord 18:S31–S33

    Article  Google Scholar 

  7. Sawada H, Oeda T, Yamamoto K (2013) Catecholamines and Neurodegeneration in Parkinson’s disease—from diagnostic marker to aggregations of α-Synuclein. Diagnostics 3(2):210–221

    Article  CAS  Google Scholar 

  8. Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson disease. Arch Neurol 56(1):33–39

    Article  CAS  Google Scholar 

  9. Stoessl AJ (2012) Neuroimaging in Parkinson’s disease: from pathology to diagnosis. Parkinsonism Relat Disord 18:S55–S59

    Article  Google Scholar 

  10. Schapira AH (2013) Recent developments in biomarkers in Parkinson disease. Curr Opin Neurol 26(4):395

    Article  CAS  Google Scholar 

  11. Saracchi E, Fermi S, Brighina L (2014) Emerging candidate biomarkers for Parkinson’s disease: a review. Aging and Disease 5(1):27

    Article  Google Scholar 

  12. Li Y, Song H, Zhang L, Zuo P, B-c Y, Yao J, Chen W (2016) Supportless electrochemical sensor based on molecularly imprinted polymer modified nanoporous microrod for determination of dopamine at trace level. Biosens Bioelectron 78:308–314

    Article  CAS  Google Scholar 

  13. Sun C-L, Chang C-T, Lee H-H, Zhou J, Wang J, Sham T-K, Pong W-F (2011) Microwave-assisted synthesis of a Core–Shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid. ACS Nano 5(10):7788–7795. doi:10.1021/nn2015908

    Article  CAS  Google Scholar 

  14. Thiagarajan S, Chen S-M (2007) Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid. Talanta 74(2):212–222

    Article  CAS  Google Scholar 

  15. Wu L-N, Tan Y-L, Wang L, Sun S-N, Qu Z-Y, Zhang J-M, Fan Y-J (2015) Dopamine sensor based on a hybrid material composed of cuprous oxide hollow microspheres and carbon black. Microchim Acta 182(7–8):1361–1369

    Article  CAS  Google Scholar 

  16. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182(1–2):1–41

    Article  CAS  Google Scholar 

  17. Chhowalla M, Liu Z, Zhang H (2015) Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem Soc Rev 44(9):2584–2586

    Article  CAS  Google Scholar 

  18. Youn DH, Han S, Kim JY, Kim JY, Park H, Choi SH, Lee JS (2014) Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube–graphene hybrid support. ACS Nano 8(5):5164–5173

    Article  CAS  Google Scholar 

  19. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127(15):5308–5309

    Article  CAS  Google Scholar 

  20. Jiang Y, Li X, Yu S, Jia L, Zhao X, Wang C (2015) Reduced Graphene oxide-modified carbon nanotube/polyimide film supported MoS2 nanoparticles for Electrocatalytic hydrogen evolution. Adv Funct Mater 25(18):2693–2700

    Article  CAS  Google Scholar 

  21. Lingappan N, Van NH, Lee S, Kang DJ (2015) Growth of three dimensional flower-like molybdenum disulfide hierarchical structures on graphene/carbon nanotube network: an advanced heterostructure for energy storage devices. J Power Sources 280:39–46

    Article  CAS  Google Scholar 

  22. Tan C, Zhang H (2015) Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev 44(9):2713–2731

    Article  CAS  Google Scholar 

  23. Yan Y, Xia B, Xu Z, Wang X (2014) Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal 4(6):1693–1705

    Article  CAS  Google Scholar 

  24. Sun G, Zhang X, Lin R, Yang J, Zhang H, Chen P (2015) Hybrid fibers made of molybdenum disulfide, reduced Graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric Supercapacitors. Angew Chem 127(15):4734–4739

    Article  Google Scholar 

  25. Lin JY, Su AL, Chang CY, Hung KC, Lin TW (2015) Molybdenum disulfide/reduced Graphene oxide–carbon nanotube hybrids as efficient catalytic materials in dye-sensitized solar cells. Chem Electro Chem 2(5):720–725

    CAS  Google Scholar 

  26. Lin Y, Chen X, Lin Y, Zhou Q, Tang D (2015) Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide. Microchim Acta 182(9–10):1803–1809

    Article  CAS  Google Scholar 

  27. Pramoda K, Moses K, Maitra U, Rao C (2015) Superior performance of a MoS2-RGO composite and a Borocarbonitride in the electrochemical detection of dopamine, uric acid and adenine. Electroanalysis 27:1892–1898

    Article  CAS  Google Scholar 

  28. Xing L, Ma Z (2016) A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 183(1):257–263

    Article  CAS  Google Scholar 

  29. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  30. Sun H, Chao J, Zuo X, Su S, Liu X, Yuwen L, Fan C, Wang L (2014) Gold nanoparticle-decorated MoS 2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv 4(52):27625–27629

    Article  CAS  Google Scholar 

  31. Han D, Han T, Shan C, Ivaska A, Niu L (2010) Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-Graphene modified electrode. Electroanalysis 22(17–18):2001–2008

    Article  CAS  Google Scholar 

  32. Harish S, Mathiyarasu J, Phani K, Yegnaraman V (2008) PEDOT/palladium composite material: synthesis, characterization and application to simultaneous determination of dopamine and uric acid. J Appl Electrochem 38(11):1583–1588

    Article  CAS  Google Scholar 

  33. Kim Y-R, Bong S, Kang Y-J, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25(10):2366–2369

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministry of Science and Technology, Taiwan (NSC 103-2811-M-027-002 and 102-2113-M-027-002-MY3).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Tung Huang.

Electronic supplementary material

ESM 1

(DOCX 931 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, V., Govindasamy, M., Chen, SM. et al. Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers. Microchim Acta 183, 2267–2275 (2016). https://doi.org/10.1007/s00604-016-1864-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1864-x

Keywords

Navigation