Microchimica Acta

, Volume 183, Issue 7, pp 2169–2176 | Cite as

Voltammetric determination of sulfonamides using paste electrodes based on various carbon nanomaterials

  • Abdellatif Ait Lahcen
  • Sophia Ait Errayess
  • Aziz Amine
Original Paper


The authors have performed a comparative study of the performance of various carbonaceous material-based electrochemical sensors in order to identify the most appropriate sensor for determination of sulfonamides. The electro-oxidative power of carbon paste electrodes prepared using carbon black, graphite, carbon nanopowder, acetylene black, multiwalled carbon nanotubes and glassy carbon powder was investigated by square-wave voltammetry at pH 6.0 using sulfamethoxazole (SMX) as the model analyte. It is found that carbon paste electrodes prepared with graphite or carbon nanopowder and operated at a voltage of 0.93 (vs. Ag/AgCl) display the highest sensitivity and lowest detection limit. Next, the sulfonamides sulfadiazine, sulfacetamide, sulfadimethoxine, sulfathiazole, sulfamethiazole and sulfamerazine were also tested. The voltammetric response is linear in the 1 to 75 μM concentrations range, with detection limits range from 0.4 to 1.2 μM, and sensitivities were between 10 and 38 nA⋅μM−1. The carbon nanopowder paste electrode (CNPE) showed the lowest detection limit (0.12 μM) for SMX and was successfully applied to its determination in (spiked) water samples and in pharmaceutical formulation.

Graphical abstract

Schematic illustration of the preparation of paste electrodes based on nanoparticles for use in voltammetric determination of sulfonamides


Electroanalysis Carbon black Graphite Carbon nanopowder Acetylene black Multiwalled carbon nanotubes Glassy carbon powder Linear sweep voltammetry Square-wave voltammetry Drug analysis 



The research presented in this manuscript was supported by the European project ‘Sensing toxicants in Marine waters makes Sense using biosensors’, (SMS) GRANT AGREEMENT N° 613844.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2016_1850_MOESM1_ESM.docx (354 kb)
ESM 1 (DOCX 353 kb)


  1. 1.
    Barana W, Adameka E, Ziemianskab J, Sobczaka A (2011) Effects of the presence of sulfonamides in the environment and their influence on human health. J Hazard Mater 196:1–15. doi: 10.1016/j.jhazmat.2011.08.082 CrossRefGoogle Scholar
  2. 2.
    Dias-Cruz MS, García-Galán MJ, Barceló D (2008) Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography quadrupole linear ion Trap-mass spectrometry. J Chromatogr A 1193:50–59. doi: 10.1016/j.chroma.2008.03.029 CrossRefGoogle Scholar
  3. 3.
    Cesarino I, Cesarino V, Lanza MRV (2013) Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: simultaneous determination of sulfamethoxazole and trimethoprim. Sensors Actuators B J188:1293–1299. doi: 10.1016/j.snb.2013.08.0 CrossRefGoogle Scholar
  4. 4.
    Trenholm RA, Vanderford BJ, Snyder SA (2009) On-line solid phase extraction LC-MS/MS analysis of pharmaceutical indicators in Water: a green alternative to conventional methods. Talanta 79:1425–1432. doi: 10.1016/j.talanta.200906006 CrossRefGoogle Scholar
  5. 5.
    Wutz K, Niessner R, Seidel M (2011) Simultaneous determination of four different antibiotic residues in honey by chemiluminescence multianalyte chip immunoassays. Microchim Acta 173:1–9. doi: 10.1007/s00604-011-0548-9 CrossRefGoogle Scholar
  6. 6.
    Souza CD, Braga OC, Vieira IC, Spinelli A (2008) Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode. Sensors Actuators B 135:66–73. doi: 10.1016/j.snb.2008.07.020 CrossRefGoogle Scholar
  7. 7.
    Munir M, Wong K, Xagoraraki I (2011) Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res 45:681. doi: 10.1016/j.watres.2010.08.033 CrossRefGoogle Scholar
  8. 8.
    Sun N, Wu S, Chen H, Zheng D, Xu J, Ye Y (2012) Determination of sulfamethoxazole in milk using molecularly imprinted polymer monolith microextraction coupled to HPLC. Microchim Acta 179:33–40. doi: 10.1016/j.watres.2010.08.033 CrossRefGoogle Scholar
  9. 9.
    Yudthavorasit S, Chiaochan C, Leepipatpiboon N (2011) Simultaneous determination of multi-class antibiotic residues in water using carrier-mediated hollow-fiber liquid-phase microextraction coupled with ultra-high performance liquid chromatography tandem mass spectrometry. Microchim Acta 172:39–49. doi: 10.1007/s00604-010-0454-6 CrossRefGoogle Scholar
  10. 10.
    Font G, Juan-Garcia A, Pico Y (2007) Pressurized liquid extraction combined with capillary electrophoresis-mass spectrometry as an improved methodology for the determination of sulfonamide residues in meat. J Chromatogr A 1159:233–241. doi: 10.1016/j.chroma.2007.03.062 CrossRefGoogle Scholar
  11. 11.
    Akay C, Ozkan SA (2002) Simultaneous LC determination of trimethoprim and sulphamethoxazole in pharmaceutical formulations. J Pharm Biomed Anal 30:1207–1213. doi: 10.1016/S0731-7085(02)00460-0 CrossRefGoogle Scholar
  12. 12.
    Chiavrino B, Crestoni ME, Marzio AD, Fornarini S (1998) Determination of Sulphonamide antibiotics by gaz chromatography coupled with atomic emission detection. J Chromatogr B 706(2):269–277. doi: 10.1016/S0378-4347(97)00568-9 CrossRefGoogle Scholar
  13. 13.
    Nagaraja P, Sunitha KR, Vasantha RA, Yathirajan HS (2002) Iminodibenzyl as a novel coupling agent for the spectrophotometric determination of sulfonamide derivatives. Eur J Pharm Biopharm 53:187–192. doi: 10.1016/S0939-6411(01)00235-1 CrossRefGoogle Scholar
  14. 14.
    Amin AS, Zareh MM (1996) Acetylacetone–formaldehyde reagent for the spectrophotometric determination of some sulfa drugs in pure and dosage forms. Microchim Acta 124:227–233. doi: 10.1007/BF01242820 CrossRefGoogle Scholar
  15. 15.
    Msagati TAM, Ngila JC (2002) Voltammetric detection of sulfonamides at a poly (3-methylthiophene) electrode. Talanta 58:605–610. doi: 10.1016/S0039-9140(02)00327-2 CrossRefGoogle Scholar
  16. 16.
    Sabry SM (2007) Polarographic and voltammetric assays of sulfonamides as α-Oxo-γ-Butyrolactone Arylhydrazones. Anal Lett 40:233–256. doi: 10.1080/00032710600867564 CrossRefGoogle Scholar
  17. 17.
    Fotouhia L, Hashkavayia AB, Heravia MM (2013) Electrochemicalbehaviour and voltammetric determination of sulphadiazine using a multi-walled carbon nanotube composite film glassy carbon electrode. J Exp Nanosci 8:947–956. doi: 10.1080/17458080.2011.624554 CrossRefGoogle Scholar
  18. 18.
    Sadeghi S, Motaharian A (2013) Voltammetric sensor based on carbon paste electrode modified with molecular imprinted polymer for determination of sulfadiazine in milk and human serum. Mater Sci Eng C33(8):4884–4891. doi: 10.1016/j.msec.2013.08.001 CrossRefGoogle Scholar
  19. 19.
    Braga OC, Campestrini I, Vieira IC, Spinelli A (2010) Sulfadiazine determination in pharmaceuticals by electrochemical reaction on a glassy carbon electrode. J Braz Chem Soc 21:813–820. doi: 10.1590/S0103-50532010000500008 CrossRefGoogle Scholar
  20. 20.
    Dejmkova H, Mikes M, Barek J, Zima J (2013) Determination of Sulfamethizole using voltammetry and amperometry on carbon paste electrode. Electronalysis 25:189–194. doi: 10.1002/elan.201200354 CrossRefGoogle Scholar
  21. 21.
    Tadi KK, Motghare RV, Ganesh V (2014) Electrochemical detection of sulfanilamide using pencil graphite electrode based on molecular imprinting technology. Electroanalysis 26:1–10. doi: 10.1002/elan.201400251 CrossRefGoogle Scholar
  22. 22.
    Svancara I, Schachl K (1999) Testing of unmodified carbon paste electrodes. Chem List 93:490–499Google Scholar
  23. 23.
    Kalcher K, Kauffmann JM, Wang J, Svancara I, Vytras K, Neuhold C, Yang Z (1995) Sensors based on carbon paste in electrochemical analysis: a review with particular emphasis on the period 1990–1993. Electroanalysis 7:5–22. doi: 10.1002/elan.1140070103 CrossRefGoogle Scholar
  24. 24.
    Malha SIR, Ait Lahcen A, Arduini F, Ourari A, Amine A (2015) Electrochemical characterization of carbon solid-like paste electrode assembled using different carbon nanoparticles. Electroanalysis 27:1–9. doi: 10.1002/elan.201500637 CrossRefGoogle Scholar
  25. 25.
    Carrazon JMP, Corona PC, Diez LMP (1987) Electroanalytical study of sulphadiazine at solid electrodes, determination in pharmaceutical preparations. Electrochim Acta 32:1573–1575. doi: 10.1016/0013-4686(87)90006-5 CrossRefGoogle Scholar
  26. 26.
    Campestrini I, De Braga OC, Vieira IC, Spinelli A (2010) Application of bismuth-film electrode for cathodic electroanalytical determination of sulfadiazine. Electrochim Acta 55:4970–4975. doi: 10.1016/j.electacta.2010.03.105 CrossRefGoogle Scholar
  27. 27.
    Valentini F, Amine A, Orlanducci S, Terranova ML, Palleschi G (2003) Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Anal Chem 75:5413–5421. doi: 10.1021/ac0300237 CrossRefGoogle Scholar
  28. 28.
    Petit C, Kauffmann JM (1995) New carbon paste electrode for the development of biosensors. Anal Proc 32:11–12. doi: 10.1039/AI9953200011 CrossRefGoogle Scholar
  29. 29.
    Rice ME, Galus Z, Adams RN (1983) Graphite paste electrodes: effects of paste composition and surface states on electron-transfer rates. J Electroanal Chem 143:89–102. doi: 10.1016/S0022-0728(83)80256-3 CrossRefGoogle Scholar
  30. 30.
    Ricci F, Goncalves C, Amine A, Gorton L, Palleschi G, Moscone D (2003) Electroanalytical study of Prussian blue modified glassy carbon paste electrodes. Electroanalysis 15:1204–1211. doi: 10.1002/elan.200390148 CrossRefGoogle Scholar
  31. 31.
    Amine A, Kauffmann JM, Patriarche GJ, Kaifer AF (1991) Long-term operational stability of a mixed glucose oxidase redox mediator-carbon paste electrode. Anal Lett 24(8):1293–1315. doi: 10.1080/00032719108052973 CrossRefGoogle Scholar
  32. 32.
    Malha SIR, Mandli J, Ourari A, Amine A (2013) Carbon black-modified electrodes as sensitive tools for the electrochemical detection of nitrite and nitrate. Electroanalysis 25:2289–2297. doi: 10.1002/elan.201300257 Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Abdellatif Ait Lahcen
    • 1
  • Sophia Ait Errayess
    • 1
  • Aziz Amine
    • 1
  1. 1.Laboratoire Génie des Procédés et Environnement, Faculté des Sciences et TechniquesHassan II University of CasablancaMohammediaMorocco

Personalised recommendations