Skip to main content

Advertisement

Log in

Determination of human serum albumin using a single-walled carbon nanotube-FET modified with bromocresol green

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We developed a nanoscale-based assay for the detection of human serum albumin (HSA) by placing the HSA indicator probe, bromocresol green (BCG) on the single-walled carbon nanotubes on a field effect transistor (swCNT-FET) via simple coating. Bovine serum albumin (BSA) was used as a blocking agent to reduce non-specific binding. The selective binding of HSA onto BCG alters the charge of the dye and the surface, and this causes a change in the conductance of the swCNT-FET. The assay is highly sensitive and selective for HSA, with an 18.6 ng⋅mL−1 detection limit. The high sensitivity and selectivity of the assay is ascribed to appropriate BSA blocking and the instantaneous response of sensitive swCNT-FET to rapid BCG-HSA binding, which minimizes non-specific binding and overcomes the time-sensitivity of BCG-HSA binding, respectively.

Highly sensitive and selective determination of human serum albumin (BSA) is demonstrated using a single-walled carbon nanotube-field effect transistor (swCNT-FET) modified with bromocresol green (BCG) and by using bovine serum albumin (BSA) as the blocking agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Peters T (1996) All about albumin: biochemistry, genetics, and medical applications. Academic Press, San Diego

    Google Scholar 

  2. Alekseev RJ, Rebane AL (2012) Serum albumin: structure, functions, and health impact. Protein biochemistry, synthesis, structure and cellular functions. Nova Science Publishers, New York

    Google Scholar 

  3. Smales CM, James DC (2005) Therapeutic proteins: methods and protocols. Methods in molecular biology, vol 308. Humana Press, NJ

    Book  Google Scholar 

  4. Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P (2012) Human serum albumin: from bench to bedside. Mol Asp Med 33(3):209–290. doi:10.1016/j.mam.2011.12.002

    Article  CAS  Google Scholar 

  5. Doumas BT, Peters T Jr (1997) Serum and urine albumin: a progress report on their measurement and clinical significance. Clin Chim Acta 258(1):3–20. doi:10.1016/S0009-8981(96)06446-7

  6. Wu HY, Peng YS, Chiang CK, Huang JW, Hung KY, Wu KD, Tu YK, Chien KL (2014) Diagnostic performance of random urine samples using albumin concentration vs ratio of albumin to creatinine for microalbuminuria screening in patients with diabetes mellitus: a systematic review and meta-analysis. JAMA Intern Med 174(7):1108–1115. doi:10.1001/jamainternmed.2014.1363

    Article  CAS  Google Scholar 

  7. Park HY, Schumock GT, Pickard AS, Akhras K (2003) A structured review of the relationship between microalbuminuria and cardiovascular events in patients with diabetes mellitus and hypertension. Pharmacotherapy 23(12):1611–1616. doi:10.1592/phco.23.15.1611.31962

    Article  Google Scholar 

  8. Robertson WS (1981) Optimizing determination of plasma albumin by the bromcresol green dye-binding method. Clin Chem 27(1):144–146

    CAS  Google Scholar 

  9. Webster D (1974) A study of the interaction of bromocresol green with isolated serum globulin fractions. Clin Chim Acta 53(1):109–115. doi:10.1016/0009-8981(74)90358-1

    Article  CAS  Google Scholar 

  10. Niwa T, Katsuzaki T, Tatemichi N, Kato K, Yazawa T, Maeda K (1990) Enzyme immunoassay for urinary albumin at low concentration in diabetes mellitus. Clin Chim Acta 186(3):391–396. doi:10.1016/0009-8981(90)90325-M

    Article  CAS  Google Scholar 

  11. Singh R, Crow FW, Babic N, Lutz WH, Lieske JC, Larson TS, Kumar R (2007) A liquid chromatography-mass spectrometry method for the quantification of urinary albumin using a novel 15 N-isotopically labeled albumin internal standard. Clin Chem 53(3):540–542. doi:10.1373/clinchem.2006.078832

    Article  CAS  Google Scholar 

  12. Contois JH, Hartigan C, Rao LV, Snyder LM, Thompson MJ (2006) Analytical validation of an HPLC assay for urinary albumin. Clin Chim Acta 367(1–2):150–155. doi:10.1016/j.cca.2005.12.002

    Article  CAS  Google Scholar 

  13. Tan L, Zheng X, Chen L, Wang Y (2014) Quality testing of human albumin by capillary electrophoresis using thermally cross-linked poly(vinyl pyrrolidone)-coated fused-silica capillary. J Sep Sci 37(20):2974–2982. doi:10.1002/jssc.201400463

    Article  CAS  Google Scholar 

  14. Smith SE, Williams JM, Ando S, Koide K (2014) Time-insensitive fluorescent sensor for human serum albumin and its unusual red shift. Anal Chem 86(5):2332–2336. doi:10.1021/ac5001256

    Article  CAS  Google Scholar 

  15. Bellan LM, Wu D, Langer RS (2011) Current trends in nanobiosensor technology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(3):229–246. doi:10.1002/wnan.136

    Article  CAS  Google Scholar 

  16. Park KY, Sohn YS, Kim CK, Kim HS, Bae YS, Choi SY (2008) Development of FET-type albumin sensor for diagnosing nephritis. Biosens Bioelectron 23(12):1904–1907. doi:10.1016/j.bios.2008.03.011

    Article  CAS  Google Scholar 

  17. Kim TH, Song HS, Jin HJ, Lee SH, Namgung S, Kim UK, Park TH, Hong S (2011) "bioelectronic super-taster" device based on taste receptor-carbon nanotube hybrid structures. Lab Chip 11(13):2262–2267. doi:10.1039/c0lc00648c

    Article  CAS  Google Scholar 

  18. Kim TH, Lee BY, Jaworski J, Yokoyama K, Chung WJ, Wang E, Hong S, Majumdar A, Lee SW (2011) Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs. ACS Nano 5(4):2824–2830. doi:10.1021/nn103324p

    Article  CAS  Google Scholar 

  19. Kim TH, Lee SH, Lee J, Song HS, Oh EH, Park TH, Hong S (2009) Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv Mater 21(1):91–94. doi:10.1002/adma.200801435

    Article  CAS  Google Scholar 

  20. Kim BB, Abdul Kadir H, Tayyab S (2008) Bromophenol blue binding to mammalian albumins and displacement of albumin-bound bilirubin. Pak J Biol Sci 11(20):2418–2422. doi:10.3923/pjbs.2008.2418.2422

    Article  CAS  Google Scholar 

  21. Tayyab S, Qasim MA (1990) Binding of bromophenol blue to bovine serum albumin and its succinylated forms. Int J Biol Macromol 12(1):55–58. doi:10.1016/0141-8130(90)90082-L

    Article  CAS  Google Scholar 

  22. Kim SH, Woo JM, Choi S, Park YJ (2015) Electrical passivation of nonselective bio molecules in carbon nanotubes: effect of pulse train in serum. Appl Phys Lett 106(26):5. doi:10.1063/1.4923241

    Google Scholar 

  23. Hideshima S, Sato R, Inoue S, Kuroiwa S, Osaka T (2012) Detection of tumor marker in blood serum using antibody-modified field effect transistor with optimized BSA blocking. Sensors Actuators B: Chem 161(1):146–150. doi:10.1016/j.snb.2011.10.001

    Article  CAS  Google Scholar 

  24. Mao S, Lu G, Yu K, Chen J (2010) Specific biosensing using carbon nanotubes functionalized with gold nanoparticle–antibody conjugates. Carbon 48(2):479–486. doi:10.1016/j.carbon.2009.09.065

    Article  CAS  Google Scholar 

  25. Chen RJ, Bangsaruntip S, Drouvalakis KA, Wong Shi Kam N, Shim M, Li Y, Kim W, Utz PJ, Dai H (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. P Natl Acad Sci USA 100(9):4984–4989. doi:10.1073/pnas.0837064100

    Article  CAS  Google Scholar 

  26. Shim M, Shi Kam NW, Chen RJ, Li Y, Dai H (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2(4):285–288. doi:10.1021/nl015692j

    Article  CAS  Google Scholar 

  27. Rodkey FL (1964) Binding of bromocresol green by human serum albumin. Arch Biochem Biophys 108(3):510–513. doi:10.1016/0003-9861(64)90435-7

    Article  CAS  Google Scholar 

  28. Kessler MA, Meinitzer A, Wolfbeis OS (1997) Albumin blue 580 fluorescence assay for albumin. Anal Biochem 248(1):180–182. doi:10.1006/abio.1997.2113

    Article  CAS  Google Scholar 

  29. Kessler MA, Meinitzer A, Petek W, Wolfbeis OS (1997) Microalbuminuria and borderline-increased albumin excretion determined with a centrifugal analyzer and the albumin blue 580 fluorescence assay. Clin Chem 43(6):996–1002

    CAS  Google Scholar 

  30. Huang C-B, Zhang K, Liu X-L, Wang S-F (2007) A flow-injection chemiluminescence method for the determination of human serum albumin, using the reaction of fluorescein–human serum albumin–sodium hypochlorite by the enhancement effect of the cationic surfactant cetyltrimethylammonium bromide. Luminescence 22(5):393–400. doi:10.1002/bio.975

    Article  CAS  Google Scholar 

  31. Feng P, Huang CZ, Li YF (2002) Direct quantification of human serum albumin in human blood serum without separation of γ-globulin by the total internal reflected resonance light scattering of thorium–sodium dodecylbenzene sulfonate at water/tetrachloromethane interface. Anal Biochem 308(1):83–89. doi:10.1016/S0003-2697(02)00221-X

    Article  CAS  Google Scholar 

  32. Liang A, Lu Z, Liu Q, Zhang X, Wen G, Jiang Z (2015) SERS quantitative analysis of trace HSA with a coomassie brilliant blue G-250 molecular probe in nanogold sol substrate. RSC Advances 5(8):5711–5715. doi:10.1039/C4RA11778F

    Article  CAS  Google Scholar 

  33. Wang H, Wu Y, Song J-F (2015) Interface potential sensing from adsorption of human serum albumin (HSA) on carbon nanotube (CNT) monitored by zero current potentiometry for HSA determination. Biosens Bioelectron 72:225–229. doi:10.1016/j.bios.2015.05.013

    Article  CAS  Google Scholar 

  34. Anees P, Sreejith S, Ajayaghosh A (2014) Self-assembled near-infrared dye nanoparticles as a selective protein sensor by activation of a dormant fluorophore. J Am Chem Soc 136(38):13233–13239. doi:10.1021/ja503850b

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2012434). This work was also supported by the Soonchunhyang University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Hyun Kim.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Kim, T.H. Determination of human serum albumin using a single-walled carbon nanotube-FET modified with bromocresol green. Microchim Acta 183, 1513–1518 (2016). https://doi.org/10.1007/s00604-016-1815-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1815-6

Keywords

Navigation