Skip to main content
Log in

Enhanced electrochemiluminescence of ZnO nanoparticles decorated on multiwalled carbon nanotubes in the presence of peroxydisulfate

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A glassy carbon electrode was modified with a nanohybrid material consisting of zinc oxide (ZnO) nanoparticles deposited on the surface of multiwalled carbon nanotubes. The nanohybrid was prepared by the use of a rapid, solvent-less and reductant-less thermal decomposition method. The modified electrode yielded a strongly enhanced electrochemiluminescence (ECL) signal at an applied potential of −1.65 V (versus Ag|AgCl|KClsat) in KOH solution containing peroxydisulfate. The increase in ECL signal intensity (with a peak at 570 nm) is attributed to an electron transfer reaction that occurred between the species formed by the reduction of peroxydisulfate and ZnO nanoparticles. The ECL signal is stable and reproducible, indicating that the nanohybrid can be used as a viable ECL luminophore. A linear relationship was found between ECL signal and peroxydisulfate concentration in the range between 0.5 and 300 mM. Conceivably, the method can be applied for the determination of species which introduce enhancement or an inhibition effect on the ECL signal of ZnO nanoparticles and peroxydisulfate.

ZnO nanoparticles were decorated on the surface of multiwalled carbon nanotubes. The nanohybrid was used to modify a glassy carbon electrode. The modified electrode (GCE/nanoZnO-MWCNTs) showed stable and strong electrochemiluminescence in the presence of K2S2O8 as a co-reactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bertoncello P, Forster RJ (2009) Nanostructured materials for electrochemiluminescence (ECL)-based detection methods: Recent advances and future perspectives. Biosens Bioelectron 24:3191–3200

    Article  CAS  Google Scholar 

  2. Hazelton SG, Zheng XW, Zhao JX, Pierce DT (2008) Developments and applications of electrogenerated chemiluminescence sensors based on micro- and nanomaterials. Sensors 8:5942–5960

    Article  CAS  Google Scholar 

  3. Jie G, Wang L, Yuan J, Zhang S (2011) Versatile electrochemiluminescence assays for cancer cells based on dendrimer/CdSe–ZnS–quantum dot nanoclusters. Anal Chem 83:3873–3880

    Article  CAS  Google Scholar 

  4. Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296:1293–1297

    Article  CAS  Google Scholar 

  5. Jie G, Zhang J, Wang D, Cheng C, Chen H-Y, Zhu J-J (2008) Electrochemiluminescence immunosensor based on CdSe nanocomposites. Anal Chem 80:4033–4039

    Article  CAS  Google Scholar 

  6. Myung N, Ding Z, Bard AJ (2002) Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett 2:1315–1319

    Article  CAS  Google Scholar 

  7. Jie G, Liu B, Pan H, Zhu J-J, Chen H-Y (2007) CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification. Anal Chem 79:5574–5581

    Article  CAS  Google Scholar 

  8. Yuan J, Guo W, Wang E (2008) Utilizing a CdTe quantum dots − enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide. Anal Chem 80:1141–1145

  9. Zhang L, Zou X, Ying E, Dong S (2008) Quantum dot electrochemiluminescence in aqueous solution at lower potential and its sensing application. J Phys Chem C 112:4451–4454

    Article  CAS  Google Scholar 

  10. Myung N, Bae Y, Bard AJ (2003) Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals. Nano Lett 3:1053–1055

    Article  CAS  Google Scholar 

  11. Wang X-F, Xu J-J, Chen H-Y (2008) A new electrochemiluminescence emission of Mn2+-doped ZnS nanocrystals in aqueous solution. J Phys Chem C 112:17581–17585

    Article  CAS  Google Scholar 

  12. Miao W (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108:2506–2553

    Article  CAS  Google Scholar 

  13. Qi H, Peng Y, Gao Q, Zhang C (2009) Applications of nanomaterials in electrogenerated chemiluminescence biosensors. Sensors 9:674–695

    Article  CAS  Google Scholar 

  14. Geng J, Liu B, Xu L, Hu F-N, Zhu J-J (2007) Facile route to Zn-based II − VI semiconductor spheres, hollow spheres, and core/shell nanocrystals and their optical properties. Langmuir 23:10286–10293

  15. Zhang R, Fan L, Fang Y, Yang S (2008) Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO. J Mater Chem 18:4964–4970

    Article  CAS  Google Scholar 

  16. Chen L, Xu N, Yang H, Zhou C, Chi Y (2011) Zinc oxide quantum dots synthesized by electrochemical etching of metallic zinc in organic electrolyte and their electrochemiluminescent properties. Electrochim Acta 56:1387–1391

    Article  CAS  Google Scholar 

  17. Zou G, Ju H (2004) Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Anal Chem 76:6871–6876

    Article  CAS  Google Scholar 

  18. Liu X, Zhang Y, Lei J, Xue Y, Cheng L, Ju H (2010) Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification with self-produced coreactant from oxygen reduction. Anal Chem 82:7351–7356

    Article  CAS  Google Scholar 

  19. Dong Y, Tian W, Ren S, Dai R, Chi Y, Chen G (2014) Graphene quantum dots/L-cysteine coreactant electrochemiluminescence system and its application in sensing lead(II) ions. ACS Appl Mater Inter 6:1646–1651

    Article  CAS  Google Scholar 

  20. Huang H, Li J, Zhu J-J (2011) Electrochemiluminescence based on quantum dots and their analytical application. Anal Methods 3:33–42

    Article  CAS  Google Scholar 

  21. Zhao WW, Wang J, Zhu YC, Xu JJ, Chen HY (2015) Quantum dots: Electrochemiluminescent and photoelectrochemical bioanalysis. Anal Chem 87:9520–9531

    Article  CAS  Google Scholar 

  22. Zhu L-P, Liao G-H, Huang W-Y, Ma L-L, Yang Y, Yu Y, Fu S-Y (2009) Preparation, characterization and photocatalytic properties of ZnO-coated multi-walled carbon nanotubes. Mater Sci Eng B-Adv 163:194–198

    Article  CAS  Google Scholar 

  23. Wang L, Yue Q, Li H, Xu S, Liu J (2013) Study on electrochemiluminescence spectra of ZnO flakes. PCCP 15:9058–9061

    Article  CAS  Google Scholar 

  24. Zhu Y, Elim HI, Foo YL, Yu T, Liu Y, Ji W, Lee JY, Shen Z, Wee ATS, Thong JTL, Sow CH (2006) Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching. Adv Mater 18:587–592

    Article  CAS  Google Scholar 

  25. Lin Y, Watson KA, Fallbach MJ, Ghose S, Smith JG, Delozier DM, Cao W, Crooks RE, Connell JW (2009) Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes. ACS Nano 3:871–884

    Article  CAS  Google Scholar 

  26. Yu C, Yan J, Tu Y (2011) Electrochemiluminescent sensing of dopamine using CdTe quantum dots capped with thioglycolic acid and supported with carbon nanotubes. Microchim Acta 175:347–354

    Article  CAS  Google Scholar 

  27. Jie GF, Zhang JJ, Wang DC, Cheng C, Chen HY, Zhu JJ (2008) Electrochemiluminescence immunosensor based on CdSe nanocomposites. Anal Chem 80:4033–4039

    Article  CAS  Google Scholar 

  28. Ding SN, Xu JJ, Chen HY (2006) Enhanced solid-state electrochemiluminescence of CdS nanocrystals composited with carbon nanotubes in H2O2 solution. Chem Commun 34:3631–3633

    Article  Google Scholar 

  29. Hua L, Han H, Chen H (2009) Enhanced electrochemiluminescence of CdTe quantum dots with carbon nanotube film and its sensing of methimazole. Electrochim Acta 54:1389–1394

    Article  CAS  Google Scholar 

  30. Wang X-F, Zhou Y, Xu J-J, Chen H-Y (2009) Signal-on electrochemiluminescence biosensors based on CdS-carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine. Adv Funct Mater 19:1444–1450

    Article  CAS  Google Scholar 

  31. Guo L, Liu X, Hu Z, Deng S, Ju H (2009) Electrochemiluminescence of CdSe quantum dots composited with nitrogen-doped carbon nanotubes. Electroanalysis 21:2495–2498

    Article  CAS  Google Scholar 

  32. Jie G, Li L, Chen C, Xuan J, Zhu J-J (2009) Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay. Biosens Bioelectron 24:3352–3358

    Article  CAS  Google Scholar 

  33. Haghighi B, Bozorgzadeh S, Gorton L (2011) Fabrication of a novel electrochemiluminescence glucose biosensor using Au nanoparticles decorated multiwalled carbon nanotubes. Sensor Actuat B: Chem 155:577–583

    Article  CAS  Google Scholar 

  34. Haghighi B, Bozorgzadeh S (2011) Enhanced electrochemiluminescence from luminol at multi-walled carbon nanotubes decorated with palladium nanoparticles: A novel route for the fabrication of an oxygen sensor and a glucose biosensor. Anal Chim Acta 697:90–97

    Article  CAS  Google Scholar 

  35. Bozorgzadeh S, Haghighi B, Gorton L (2015) Fabrication of a highly efficient solid state electrochemiluminescence sensor using Ru(bpy)3 2+ incorporated nanoZnO-MWCNTs-nafion composite film. Electrochim Acta 164:211–217

    Article  CAS  Google Scholar 

  36. Haghighi B, Bozorgzadeh S (2011) Fabrication of a highly sensitive electrochemiluminescence lactate biosensor using ZnO nanoparticles decorated multiwalled carbon nanotubes. Talanta 85:2189–2193

    Article  CAS  Google Scholar 

  37. Haghighi B, Tavakoli A, Bozorgzadeh S (2015) Cathodic electrogenerated chemiluminescence of luminol on glassy carbon electrode modified with cobalt nanoparticles decorated multi-walled carbon nanotubes. Electrochim Acta 154:259–265

    Article  CAS  Google Scholar 

  38. Shen L, Cui X, Qi H, Zhang C (2007) Electrogenerated chemiluminescence of ZnS nanoparticles in alkaline aqueous solution. J Phys Chem C 111:8172–8175

    Article  CAS  Google Scholar 

  39. Zidan M, Tee TW, Abdullah AH, Zainal Z, Kheng GJ (2010) Electrochemical oxidation of paracetamol mediated by zinc oxide modified glassy carbon electrodee. Aust J Basic Appl Sci 4:6025–6030

    CAS  Google Scholar 

  40. Bingqiang C, Weiping C, Guotao D, Yue L, Qing Z, Dapeng Y (2005) A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties. Nanotechnol 16:2567–2574

    Article  Google Scholar 

  41. Liu X, Wu X, Cao H, Chang RPH (2004) Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J Appl Phys 95:3141–3147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Institute for Advanced Studies in Basic Science (IASBS, grant number G2015IASBS119) and Iran’s National Elites Foundation (INEF, grant number 1393-15/66597) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Somayyeh Bozorgzadeh or Behzad Haghighi.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozorgzadeh, S., Haghighi, B. Enhanced electrochemiluminescence of ZnO nanoparticles decorated on multiwalled carbon nanotubes in the presence of peroxydisulfate. Microchim Acta 183, 1487–1492 (2016). https://doi.org/10.1007/s00604-016-1785-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1785-8

Keywords

Navigation