Skip to main content
Log in

Simultaneous determination of ascorbic acid, dopamine and uric acid using a glassy carbon electrode modified with the nickel(II)-bis(1,10-phenanthroline) complex and single-walled carbon nanotubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report that a glassy carbon electrode modified with the [Ni(phen)2]2+ complex and single-walled carbon nanotubes represents a useful sensor for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The material was characterized by scanning electron microscopy, and the electrode by cyclic voltammetry and electrochemical impedance spectroscopy. The experiments showed that this electrode responds to AA, DA and UA, best at working potentials of 0.130 V, 0.334 V, 0.486 V (vs. SCE), over the wide linear ranges from 30 to 1546 μM (for AA), 1 to 780 μM (for DA), and 1 to 1407 μM (for UA). The respective detection limits are 12 μM, 1 μM and 0.76 μM at an S/N ratio of 3. The modified electrode was successfully applied to the determination of AA, DA and UA in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang L, Wang Z, Xia Y, Kai G, Chen W, Tang K (2007) Metabolic engineering of plant L-ascorbic acid biosynthesis: recent trends and applications. Crit Rev Biotechnol 27(3):173–182. doi:10.1080/07388550701503626

    Article  CAS  Google Scholar 

  2. McGregor GP, Biesalski HK (2006) Rationale and impact of vitamin C in clinical nutrition. Curr Opin Clin Nutr Metab Care 9(6):697–703. doi:10.1097/01.mco.0000247478.79779.8f

    Article  CAS  Google Scholar 

  3. Reddaiah K, Reddy MM, Raghu P, Reddy TM (2013) An electrochemical sensor based on poly (solochrome dark blue) film coated electrode for the determination of dopamine and simultaneous separation in the presence of uric acid and ascorbic acid: a voltammetric method. Colloids Surf B: Biointerfaces 106:145–150. doi:10.1016/j.colsurfb.2013.01.025

    Article  CAS  Google Scholar 

  4. Nikolaus S, Antke C, Muller HW (2009) In vivo imaging of synaptic function in the central nervous system: I. Movement disorders and dementia. Behav Brain Res 204(1):1–31. doi:10.1016/j.bbr.2009.06.008

    Article  Google Scholar 

  5. Falasca GF (2006) Metabolic diseases: gout. Clin Dermatol 24(6):498–508. doi:10.1016/j.clindermatol.2006.07.015

    Article  Google Scholar 

  6. Gagliardi ACM, Miname MH, Santos RD (2009) Uric acid: a marker of increased cardiovascular risk. Atherosclerosis 202(1):11–17. doi:10.1016/j.atherosclerosis.2008.05.022

    Article  CAS  Google Scholar 

  7. Zen J-M, Senthil Kumar A, Tsai D-M (2003) Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 15(13):1073–1087. doi:10.1002/elan.200390130

    Article  CAS  Google Scholar 

  8. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41. doi:10.1007/s00604-014-1308-4

    Article  CAS  Google Scholar 

  9. Zou HL, Li BL, Luo HQ, Li NB (2015) A novel electrochemical biosensor based on hemin functionalized graphene oxide sheets for simultaneous determination of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical 207, Part A:535–541. doi:10.1016/j.snb.2014.10.121

  10. Hassan KM, Elhaddad GM, Abdel Azzem M (2014) Simultaneous determination of ascorbic acid, uric acid and glucose using glassy carbon electrode modified by nickel nanoparticles at poly 1, 8-diaminonaphthalene in basic medium. J Electroanal Chem 728:123–129. doi:10.1016/j.jelechem.2014.06.007

    Article  CAS  Google Scholar 

  11. Shi M, Chen Z, Guo L, Liang X, Zhang J, He C, Wang B, Wu Y (2014) A multiwalled carbon nanotube/tetra-[small beta]-isoheptyloxyphthalocyanine cobalt(ii) composite with high dispersibility for electrochemical detection of ascorbic acid. J Mater Chem B 2(30):4876–4882. doi:10.1039/C4TB00229F

    Article  CAS  Google Scholar 

  12. Leonardi SG, Aloisio D, Donato N, Rathi S, Ghosh K, Neri G (2014) Electrochemical sensing of ascorbic acid by a novel manganese(III) complex. Mater Lett 133:232–235. doi:10.1016/j.matlet.2014.06.145

    Article  CAS  Google Scholar 

  13. Khoshro H, Zare HR, Gorji A, Namazian M (2014) A study of the catalytic activity of symmetric and unsymmetric macrocyclic [N42−] coordinated nickel complexes for electrochemical reduction of carbon dioxide. Electrochim Acta 117:62–67. doi:10.1016/j.electacta.2013.11.078

    Article  CAS  Google Scholar 

  14. García M, Aguirre MJ, Canzi G, Kubiak CP, Ohlbaum M, Isaacs M (2014) Electro and photoelectrochemical reduction of carbon dioxide on multimetallic porphyrins/polyoxotungstate modified electrodes. Electrochim Acta 115:146–154. doi:10.1016/j.electacta.2013.10.142

    Article  Google Scholar 

  15. Jafarian M, Rashvand avei M, Gobal F, Rayati S, Mahjani M (2011) Electrocatalytic oxidation of 1-propanol and 2-propanol on electro-active films derived from NiII-(N, N′-bis(2-hydroxy, 3-methoxy benzaldehyde)-1,2-propandiimine) modified glassy carbon electrode. Electrocatalysis 2(3):163–171. doi:10.1007/s12678-011-0049-y

    Article  CAS  Google Scholar 

  16. Ramaswamy N, Tylus U, Jia Q, Mukerjee S (2013) Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. J Am Chem Soc 135(41):15443–15449. doi:10.1021/ja405149m

    Article  CAS  Google Scholar 

  17. Ciszewski A, Stepniak I (2012) Preparation, characterization and redox reactivity of glassy carbon electrode modified with organometallic complex of nickel. Electrochim Acta 76:462–467. doi:10.1016/j.electacta.2012.05.059

    Article  CAS  Google Scholar 

  18. Zheng L, J-f S (2010) Electrocatalytic oxidation of methanol and other short chain aliphatic alcohols at Ni(II)–quercetin complex modified multi-wall carbon nanotube paste electrode. J Solid State Electrochem 14(1):43–50. doi:10.1007/s10008-008-0780-3

    Article  CAS  Google Scholar 

  19. Chauke V, Matemadombo F, Nyokong T (2010) Remarkable sensitivity for detection of bisphenol A on a gold electrode modified with nickel tetraamino phthalocyanine containing Ni-O-Ni bridges. J Hazard Mater 178(1-3):180–186. doi:10.1016/j.jhazmat.2010.01.061

    Article  CAS  Google Scholar 

  20. Bansal VK, Thankachan PP, Prasad R (2010) Catalytic and electrocatalytic wet oxidation of phenol using two new nickel(II) tetraazamacrocycle complexes under heterogeneous conditions. J Mol Catal A Chem 316(1–2):131–138. doi:10.1016/j.molcata.2009.10.011

    Article  CAS  Google Scholar 

  21. Qiu B, Lin Z, Wang J, Chen Z, Chen J, Chen G (2009) An electrochemiluminescent biosensor for glucose based on the electrochemiluminescence of luminol on the nafion/glucose oxidase/poly(nickel(II)tetrasulfophthalocyanine)/multi-walled carbon nanotubes modified electrode. Talanta 78(1):76–80. doi:10.1016/j.talanta.2008.10.067

    Article  CAS  Google Scholar 

  22. Gholivand MB, Azadbakht A (2012) Fabrication of a highly sensitive glucose electrochemical sensor based on immobilization of Ni(II)–pyromellitic acid and bimetallic Au–Pt inorganic–organic hybrid nanocomposite onto carbon nanotube modified glassy carbon electrode. Electrochim Acta 76:300–311. doi:10.1016/j.electacta.2012.05.037

    Article  CAS  Google Scholar 

  23. Abbaspour A, Khajehzadeh A, Ghaffarinejad A (2009) Electrocatalytic oxidation and determination of hydrazine on nickel hexacyanoferrate nanoparticles-modified carbon ceramic electrode. J Electroanal Chem 631(1–2):52–57. doi:10.1016/j.jelechem.2009.03.011

    Article  CAS  Google Scholar 

  24. Jacobs CB, Peairs MJ, Venton BJ (2010) Review: carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662(2):105–127. doi:10.1016/j.aca.2010.01.009

    Article  CAS  Google Scholar 

  25. Kamyabi MA, Narimani O, Monfared HH (2010) Electrocatalytic oxidation of hydrazine using glassy carbon electrode modified with carbon nanotube and terpyridine manganese(II) complex. J Electroanal Chem 644(1):67–73. doi:10.1016/j.jelechem.2010.03.037

    Article  CAS  Google Scholar 

  26. Geraldo DA, Togo CA, Limson J, Nyokong T (2008) Electrooxidation of hydrazine catalyzed by noncovalently functionalized single-walled carbon nanotubes with CoPc. Electrochim Acta 53(27):8051–8057. doi:10.1016/j.electacta.2008.05.083

    Article  CAS  Google Scholar 

  27. Liu X, Li X, Xiong Y, Huang Q, Li X, Dong Y, Liu P, Zhang C (2013) A glassy carbon electrode modified with the nickel(II)-bis(1,10-phenanthroline) complex and multi-walled carbon nanotubes, and its use as a sensor for ascorbic acid. Microchim Acta 180(13-14):1309–1316. doi:10.1007/s00604-013-1058-8

    Article  CAS  Google Scholar 

  28. Yang L, Li X, Xiong Y, Liu X, Li X, Wang M, Yan S, Alshahrani LAM, Liu P, Zhang C (2014) The fabrication of a Co (II) complex and multi-walled carbon nanotubes modified glass carbon electrode, and its application for the determination of dopamine. J Electroanal Chem 731:14–19. doi:10.1016/j.jelechem.2014.07.036

    Article  CAS  Google Scholar 

  29. Alshahrani LA, Li X, Luo H, Yang L, Wang M, Yan S, Liu P, Yang Y, Li Q (2014) The simultaneous electrochemical detection of catechol and hydroquinone with [Cu(Sal-beta-Ala)(3,5-DMPz)2]/SWCNTs/GCE. Sensors (Basel, Switzerland) 14(12):22274–22284. doi:10.3390/s141222274

    Article  Google Scholar 

  30. Chemical Society of Japan (ed) (1988) Handbook of inorganic compounds. Beijing Chemical Industry Press, Beijing

    Google Scholar 

  31. Kim UJ, Furtado CA, Liu X, Chen G, Eklund PC (2005) Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J Am Chem Soc 127(44):15437–15445. doi:10.1021/ja052951o

    Article  CAS  Google Scholar 

  32. Nancy TEM, Kumary VA (2014) Synergistic electrocatalytic effect of graphene/nickel hydroxide composite for the simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Electrochim Acta 133:233–240. doi:10.1016/j.electacta.2014.04.027

    Article  CAS  Google Scholar 

  33. Liu XF, Wei SP, Chen SH, Yuan DH, Zhang W (2014) Graphene-multiwall carbon nanotube-gold nanocluster composites modified electrode for the simultaneous determination of ascorbic acid, dopamine, and uric acid. Appl Biochem Biotechnol 173(7):1717–1726. doi:10.1007/s12010-014-0959-2

    Article  CAS  Google Scholar 

  34. Zhang XF, Yan WF, Zhang JN, Li YY, Tang WY, Xu Q (2015) NiCo-embedded in hierarchically structured N-doped carbon nanoplates for the efficient electrochemical determination of ascorbic acid, dopamine, and uric acid. RSC Adv 5(80):65532–65539. doi:10.1039/C5RA10937J

    Article  CAS  Google Scholar 

  35. Li H, Wang Y, Ye D, Luo J, Su B, Zhang S, Kong J (2014) An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite. Talanta 127:255–261. doi:10.1016/j.talanta.2014.03.034

    Article  CAS  Google Scholar 

  36. Zhao D, Fan D, Wang J, Xu C (2015) Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 182(7–8):1345–1352. doi:10.1007/s00604-015-1450-7

    Article  CAS  Google Scholar 

  37. Xing L, Ma Z (2015) A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Microchim Acta. doi:10.1007/s00604-015-1648-8

    Google Scholar 

  38. Rafati AA, Afraz A, Hajian A, Assari P (2014) Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Microchim Acta 181(15–16):1999–2008. doi:10.1007/s00604-014-1293-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51273155) and the Fundamental Research Funds for the Central Universities (No. 2014-Ia-030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Li or Chaocan Zhang.

Ethics declarations

The author(s) declare that they have no competing interests

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 6966 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Li, X., Xiong, Y. et al. Simultaneous determination of ascorbic acid, dopamine and uric acid using a glassy carbon electrode modified with the nickel(II)-bis(1,10-phenanthroline) complex and single-walled carbon nanotubes. Microchim Acta 183, 1401–1408 (2016). https://doi.org/10.1007/s00604-016-1776-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1776-9

Keywords

Navigation