Ultra-sensitive chemiluminescent detection of Staphylococcus aureus based on competitive binding of Staphylococcus protein A-modified magnetic beads to immunoglobulin G


Staphylococcus protein A (SPA) is a surface protein only expressed naturally in the cell walls of Staphylococcus aureus (S. aureus) and binds specifically to the Fc region of immunoglobulin G (IgG). This fact can be utilized for the detection of S. aureus. Specifically, SPA-modified magnetic beads, compete with S. aureus pathogens for binding to rabbit IgG that previously was labeled with horseradish peroxidase (HRP). The beads were then magnetically separated, and chemiluminescence (CL) was generated by adding the reagents luminol and H2O2. Under optimal conditions, the intensity of CL decreases with increasing concentration of S. aureus over a very wide linear range (10 to 1.0 × 109 cfu·mL−1), with a limit of detection of 6.0 cfu·mL−1 at an S/N ratio of 3. The assay (including binding reaction, magnetic separation, washing of beads and detection) is completed within 50 min which is faster than many reported methods. It can well distinguish S. aureus from other Gram-positive and Gram-negative bacteria. The magnetic beads have the beneficial effect of eliminating undesired matrix effects and of concentrating the sample. The method was applied to the analysis of urine, apple juice and glucose injection samples spiked with S. aureus, and recoveries ranged from 85 to 107 %.

Staphylococcus aureus (S. aureus) competes with Staphylococcus protein A-modified magnetic beads (SPA-modified magnetic beads) for binding to horseradish peroxidase-labeled IgG (HRP-labeled IgG). A facile chemiluminescent (CL) method was established for ultra-sensitive detection of S. aureus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Paule SM, Mehta M, Hacek DM, Gonzalzles TM, Robicsek A, Peterson LR (2009) Chromogenic media vs real-time PCR for nasal surveillance of Methicillin-resistant Staphylococcus aureus impact on detection of MRSA-positive persons. Am J Clin Pathol 131:532–539

    CAS  Article  Google Scholar 

  2. 2.

    Roda A, Mirasili M, Roda B, Bonvicini F, Colliva C, Reschiglian P (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178:7–28

    CAS  Article  Google Scholar 

  3. 3.

    Safdar N, Narans L, Gordon B, Maki DG (2003) Comparison of culture screening methods for detection of nasal carriage of Methicillin-resistant Staphylococcus aureus: a prospective study comparing 32 methods. J Clin Microbiol 41:3163–3166

    CAS  Article  Google Scholar 

  4. 4.

    Cheng JC, Huang CL, Lin CC, Chen CC, Chang YC, Chang SS, Tseng CP (2006) Rapid detection and identification of clinically important bacteria high-resolution melting analysis after broad-range ribosomal RNA real-time PCR. Clin Chem 52:1997–2004

    CAS  Article  Google Scholar 

  5. 5.

    Xu S (2012) Electromechanical biosensors for pathogen detection. Microchim Acta 178:245–260

    CAS  Article  Google Scholar 

  6. 6.

    Kobayashi N, Wu H, Kojima K, Taniguchi K, Urasawa S, Uehara N, Omizu Y, Kishi Y, Yagihashi A, Kurokawa I (1994) Detection of mecA, femA, and femB genes in clinical strains of Staphylococci using polymerase chain-reaction. Epidemiol Infect 113:259–266

    CAS  Article  Google Scholar 

  7. 7.

    Wang H, Chen HW, Hupert ML, Chen PC, Pittman PT, Goettert J, Murphy MC, Williams D, Barany F (2012) Fully integrated thermoplastic genosensor for the highly sensitive detection and identification of mulit-drug-resistant Tuberculosis. Angew Chem Int Ed 51:4349–4353

    CAS  Article  Google Scholar 

  8. 8.

    Kersting S, Rausch V, Bier FF, Nickisch-Rosenegk MV (2014) Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Microchim Acta 181:1715–1723

    CAS  Article  Google Scholar 

  9. 9.

    Wu X, Su YC (2014) Growth of Staphylococcus aureus and enterotoxin production in precooked tuna meat. Food Control 42:63–70

    Article  Google Scholar 

  10. 10.

    Nawattanapaiboon K, Kiatpathomchai W, Santanirand P, Vongsakulyanon A, Amarit R, Somboonkaew A, Sutapun B, Srikhirin T (2015) SPR-DNA array for detection of methicillin-resistant Staphylococcus aureus (MRSA) in combination with loop-mediated isothermal amplification. Biosens Bioelectron 74:335–340

    CAS  Article  Google Scholar 

  11. 11.

    Zhang TT, Ding JY, Rao XC, Yu JB, Chu ML, Ren W, Wang L, Xue WC (2015) Analysis of methicillin-resistant Staphylococcus aureus major clonal lineages by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). J Microbiol Meth 117:127–127

    Article  Google Scholar 

  12. 12.

    Jia F, Duan N, Wu SJ, Ma XY, Xia Y, Wang ZP, Wei XL (2014) Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Microchim Acta 181:967–974

    CAS  Article  Google Scholar 

  13. 13.

    Yuan JL, Yu Y, Li C, Ma XY, Xia Y, Chen J, Wang ZP (2014) Visual detection and microplate assay for Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification. Microchim Acta 181:321–327

    CAS  Article  Google Scholar 

  14. 14.

    Duan N, Wu SJ, Dai SL, Miao TT, Chen J, Wang ZP (2015) Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim Acta 182:917–923

    CAS  Article  Google Scholar 

  15. 15.

    Brandão D, Liébana S, Pividori MI (2015) Multiplexed detection of foodborne pathogens based on magnetic particles. New Biotechnol 32:511–520

    Article  Google Scholar 

  16. 16.

    Iranifam M (2013) Analytical applications of chemiluminescence–detection systems assisted by magnetic microparicles and nanoparticles. Trends Anal Chem 51:51–70

    CAS  Article  Google Scholar 

  17. 17.

    Bi S, Yan YM, Yang XY, Zhang SS (2009) Gold nanolabels for new enhanced chemiluminescence immunoassay of alpha-fetoprotein based on magnetic beads. Chem Eur J 15:4704–4709

    CAS  Article  Google Scholar 

  18. 18.

    Zhao Y, Ye MQ, Chao QG, Jia NQ, Ge Y, Shen HB (2009) Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagetic separation in food samples. J Agric Food Chem 57:517–524

    CAS  Article  Google Scholar 

  19. 19.

    Liébana S, Lermo A, Campoy S, Cortés MP, Alegret S, Pividori MI (2009) Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing. Biosens Bioelectron 25:510–513

    Article  Google Scholar 

  20. 20.

    Fischer JR, Parveen N, Magoun L, Leong JM (2003) Decorin-binding proteins A and B confer distinct mammalian cell type-specific attachment by Borrelia burgdorferi, the Lyme disease spirochete. Proc Natl Acad Sci U S A 100:7307–7312

    CAS  Article  Google Scholar 

  21. 21.

    Orndorff PE, Dworkin M (1982) Synthesis of several membrane proteins during developmental aggregation in Myxococcus xanthus. J Bacteriol 149:29–39

    CAS  Google Scholar 

  22. 22.

    Ren H, Wang ZW, Du B, Yu QW, Wang L, Chen HQ, Qian M, Zhang P, Jiang LH (2011) Principles and techniques of immunology. In: immunolabelling technique, 1st edn. Higher Education Press, Beijing, pp 228–232

  23. 23.

    Graile M, Stura EA, Corper AL, Sutton BJ, Taussig MJ, Charbonnier JB, Silverman GJ (1999) Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci U S A 97:5399–5404

    Article  Google Scholar 

  24. 24.

    Ryan S, Kell AJ, Faassen HV, Tay LL, Simard B, MacKenzie R, Gilbert M, Tanha J (2009) Single-domain antibody-nanoparticles: promising architectures for increased Staphylococcus aureus detection specificity and sensitivity. Bioconjug Chem 20:1966–1974

    CAS  Article  Google Scholar 

  25. 25.

    Touhami A, Jericho MH, Beveridge TJ (2007) Molecular recognition forces between immunoglobulin G and a surface protein adhesion on living Staphylococcus aureus. Langmuir 23:2755–2760

    CAS  Article  Google Scholar 

  26. 26.

    Gouda H, Shiraishi M, Takahashi H, Kato K, Torigoe H, Arata Y, Shimada I (1998) NMR study of the interaction between the B domain of Staphylococcal protein A and the Fc portion of immunoglobulin G. Biochemistry 37:129–136

    CAS  Article  Google Scholar 

  27. 27.

    Yu JP, Zhang Y, Zhang Y, Li H, Yang H, Wei HP (2016) Sensitive and rapid detection of Staphylococcus aureus in mink via cell binding domain of lysin. Biosens Bioelectron 77:366–371

    CAS  Article  Google Scholar 

  28. 28.

    Hu YH, Wang CC, Bai B, Li MT, Wang RH, Li YB (2014) Detection of Staphylococcus aureus using quantum dots as fluorescence labels. Int J Agr Biol Eng 7:77–83

    CAS  Google Scholar 

  29. 29.

    Zhang H, Ma XY, Liu Y, Duan N, Wu SJ, Wang ZP, Xu BC (2015) Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens Bioelectron 74:872–877

    CAS  Article  Google Scholar 

  30. 30.

    Shangguang JF, Li YH, He DG, He XX, Wang KM, Zou Z, Shi H (2015) A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus. Analyst 140:4489–4497

    Article  Google Scholar 

Download references


We gratefully thank the National Natural Science Foundation of China (21475107) and the Fundamental Research Funds for the Central Universities (XDJK2013A025).

Author information



Corresponding author

Correspondence to Zhifeng Fu.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material


(DOCX 90.3 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, J., Wang, W., Zhou, Y. et al. Ultra-sensitive chemiluminescent detection of Staphylococcus aureus based on competitive binding of Staphylococcus protein A-modified magnetic beads to immunoglobulin G. Microchim Acta 183, 1507–1512 (2016). https://doi.org/10.1007/s00604-016-1769-8

Download citation


  • Magnetic beads
  • Staphylococcus protein A
  • Horseradish peroxidase
  • Luminol
  • Fluorescence imaging
  • Pseudomonas
  • Micrococcus
  • Bacillus subtilis
  • Escherichia coli
  • Salmonella typhimurium