Skip to main content

Advertisement

Log in

Porous graphene containing immobilized Ru(II) tris-bipyridyl for use in electrochemiluminescence sensing of tripropylamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope

Abstract

Three-dimensional porous graphene (3D-pGR) was used to immobilize Ru(II) tris-bipyridyl [Ru(bpy)3 2+] for electrochemiluminescence (ECL) based sensing of tripropylamine (TPA). The 3D-pGR with interpenetrating porous structures was produced from freeze-drying dispersions containing graphene oxide followed by calcination. Field emission scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy were used to characterize morphologies and the composition of the 3D-pGR. After immobilization of Ru(bpy)3 2+ onto the electrodes, the results indicated that the ECL intensity from the 3D-pGR modified electrode was higher by a factor of 2.5 than that from the graphene film, which was attributed to a larger active surface area and faster electron transfer. The modified electrode was further used to determine TPA in water, and a good linear range from 0.5 to 100 μM with the detection limit as low as 0.4 nM was obtained. The ECL assay presented here also exhibits potential applications in detection of biomolecules such as DNA, glucose, thrombin, lysozyme, etc.

Three dimensional porous graphene was used to immobilize Ru(bpy)3 2+ for electrochemiluminescence sensing. The electrochemiluminescence signal is 2.5 times higher than that from the common graphene film. The modified electrodes were successfully used to detect tripropylamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Su M, Wei W, Liu S (2011) Analytical applications of the electrochemiluminescence of tris(2,2'-bipyridyl)ruthenium(II) coupled to capillary/microchip electrophoresis: a review. Anal Chim Acta 704:16–32

    Article  CAS  Google Scholar 

  2. Li J, Wang EK (2012) Applications of tris(2,2'-bipyridyl)ruthenium(II) in electrochemiluminescence. Chem Rev 12:177–187

    CAS  Google Scholar 

  3. Liu ZY, Qi WJ, Xu GB (2015) Recent advances in electrochemiluminescence. Chem Soc Rev 44:3117–3142

    Article  CAS  Google Scholar 

  4. Chen XM, Su BY, Song XH, Chen QA, Chen X, Wang XR (2011) Recent advances in electrochemiluminescent enzyme biosensors. Trac-Trend Anal Chem 30:665–676

    Article  CAS  Google Scholar 

  5. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  6. Loh KP, Bao Q, Ang PK, Yang J (2010) The chemistry of graphene. J Mater Chem 20:2277–2289

    Article  CAS  Google Scholar 

  7. Pérez-López B, Merkoçi A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16

    Article  Google Scholar 

  8. Lei W, Si WM, Xu YJ, Gu ZY, Hao QL (2014) Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181:707–722

    Article  CAS  Google Scholar 

  9. Zhou L, Huang J, Yang L, Li L, You T (2014) Enhanced electrochemiluminescence based on Ru(bpy)3 2+-doped silica nanoparticles and graphene composite for analysis of melamine in milk. Anal Chim Acta 824:57–63

    Article  CAS  Google Scholar 

  10. Gao WH, Chen YS, Xi J, Zhang A, Chen YW, Lu FS, Chen ZG (2012) A novel electrochemiluminescence sensor based on Ru(bpy)3 2+ immobilized by graphene on glassy carbon electrode surface via in situ wet-chemical reaction. Sensors Actuators B 171-172:1159–1165

    Article  CAS  Google Scholar 

  11. Gu W, Xu Y, Lou B, Lyu Z, Wang E (2014) One-step process for fabricating paper-based solid-state electrochemiluminescence sensor based on functionalized graphene. Electrochem Commun 38:57–60

    Article  CAS  Google Scholar 

  12. Jiang L, Fan Z (2014) Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale 6:1922–1945

    Article  CAS  Google Scholar 

  13. Chen K, Chen L, Chen Y, Bai H, Li L (2012) Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application. J Mater Chem 22:20968–20976

    Article  CAS  Google Scholar 

  14. Qian L, Lu L (2015) Fabrication of three-dimensional porous graphene–manganese dioxide composites as electrode materials for supercapacitors. Colloid Surface A 465:32–38

    Article  CAS  Google Scholar 

  15. Xu P, Yang J, Wang K, Zhou Z, Shen P (2012) Porous graphene: properties, preparation, and potential applications. Chin Sci Bull 57:2948–2955

    Article  CAS  Google Scholar 

  16. Zhang L, Zhang F, Yang X, Long G, Wu Y, Zhang T, Leng K, Huang Y, Ma Y, Yu A, Chen Y (2013) Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci Report 3:1408

    Google Scholar 

  17. Wang ZL, Xu D, Wang HG, Wu Z, Zhang XB (2013) In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano 7:2422–2430

    Article  CAS  Google Scholar 

  18. Xiao J, Mei D, Li X, Xu W, Wang D, Graff GL, Bennett WD, Nie Z, Saraf LV, Aksay IA, Liu J, Zhang JG (2011) Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett 11:5071–5078

    Article  CAS  Google Scholar 

  19. Du A, Zhu Z, Smith SC, Am J (2010) Multifunctional porous graphene for nanoelectronics and hydrogen storage: new properties revealed by first principle calculations. Chem Soc 132:2876–2877

    Article  CAS  Google Scholar 

  20. Jiang DE, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9:4019–4024

    Article  CAS  Google Scholar 

  21. Qian L, Lu L (2014) Three dimensional porous graphene–chitosan composites from ice-induced assembly for direct electron transfer and electrocatalysis of glucose oxidase. RSC Adv 4:38273–38280

    Article  CAS  Google Scholar 

  22. Yan ZX, Xu ZH, Yu JG, Liu G (2014) Enhanced electrochemiluminescence performance of Ru(bpy)3 2+/CuO/TiO2 nanotube array sensor for detection of amines. Electroanalysis 26:2017–2022

    Article  CAS  Google Scholar 

  23. Ruan SP, Li ZJ, Qi HL, Gao Q, Zhang CX (2014) Label-free supersandwich electrogenerated chemiluminescence biosensor for the determination of the HIV gene. Microchim Acta 181:1293–1300

    Article  CAS  Google Scholar 

  24. Liu DY, Xin YY, He XW, Yin XB (2011) The electrochemiluminescence of ruthenium complex/tripropylamine systems at DNA-modified gold electrodes. Biosens Bioelectron 26:2703–2706

    Article  CAS  Google Scholar 

  25. Xu Y, Lou B, Lv Z, Zhou Z, Zhang L, Wang E (2013) Paper-based solid-state electrochemiluminescence sensor using poly(sodium 4-styrenesulfonate) functionalized graphene/nafion composite film. Anal Chim Acta 763:20–27

    Article  CAS  Google Scholar 

  26. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87

    Article  CAS  Google Scholar 

  27. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246

    Article  CAS  Google Scholar 

  28. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4:1790–1798

    Article  CAS  Google Scholar 

  29. Liu XQ, Shi LH, Niu WX, Li HJ, Xu GB (2007) Environmentally friendly and highly sensitive ruthenium(II) tris(2,2′-bipyridyl) electrochemiluminescent system using 2-(dibutylamino)ethanol as Co-reactant. Angew Chem Int Ed 46:421–424

    Article  CAS  Google Scholar 

  30. Li HJ, Han S, Hu LZ, Xu GB (2009) Progress in Ru(bpy)3 2+ electrogenerated chemluminescence. Chin J Anal Chem 37:1557–1565

    Article  CAS  Google Scholar 

  31. Qian L, Yang XR (2007) One-step synthesis of Ru (2, 2′-bipyridine) 3Cl2-immobilized silica nanoparticles for use in electrogenerated chemiluminescence detection. Adv Funct Mater 17:1353–1358

    Article  CAS  Google Scholar 

  32. Yu YQ, Zhou M, Shen W, Zhang HL, Cao Q, Cui H (2012) Synthesis of electrochemiluminescent graphene oxide functionalized with a ruthenium(II) complex and its use in the detection of tripropylamine. Carbon 50:2 5 3 9–2 5 4 5

    Article  CAS  Google Scholar 

  33. Chen GF, Zhai SF, Zhai YL, Zhang K, Yue QL, Wang L, Zhao JS, Wang HS, Liu JF, Jia JB (2011) Preparation of sulfonic-functionalized graphene oxide as ion-exchange material and its application into electrochemiluminescence analysis. Biosens Bioelectron 26:3136–3141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (No. 51202130), the Shandong Provincial Natural Science Foundation, China (No.ZR2012BQ001), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry and State Key Laboratory of Electroanalytical Chemistry Open Foundation (No. SKLEAC201304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Qian.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Jie Lin and Haikun Wu contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Wu, H., Lu, L. et al. Porous graphene containing immobilized Ru(II) tris-bipyridyl for use in electrochemiluminescence sensing of tripropylamine. Microchim Acta 183, 1211–1217 (2016). https://doi.org/10.1007/s00604-016-1756-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1756-0

Keywords

Navigation