Skip to main content
Log in

A glassy carbon electrode modified with an iron N4-macrocycle and reduced graphene oxide for voltammetric sensing of dissolved oxygen

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a platform for the electrochemical reduction of oxygen. It is based on the use of a glassy carbon electrode (GCE) that was modified in a single-step microwave assisted reaction with a N4-macrocycle containing iron(III) (FeN4) and with reduced graphene oxide. The FeN4/rGO composite was characterized by cyclic voltammetry, differential pulse voltammetry, and scanning electrochemical microscopy (SECM). Cyclic voltammetry showed the composite to enable efficient reduction of O2 at a very low overpotential (−0.05 V vs. Ag/AgCl). SECM measurements were carried out to map (in the redox competition mode) the activity of a GCE microelectrode modified with FeN4/rGO. Under optimized conditions, the response to dissolved O2 ranges from 0.8 up to 25 mg⋅L‾1, and the limit of detection is 0.2 mg⋅L‾1.

A dissolved oxygen sensor was fabricated exploiting reduced graphene oxide-iron N4-macrocycle composite on glassy carbon electrode. Scanning electrochemical imaging of the composite film showed the excellent ability of film to reduce dissolved oxygen over all sensor surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Skoog DA, West DM and Holler FJ. In Fundamentals of Analytical Chemistry (5th edn.), Saunders: Philadelphia, 1988; pp. 344–350

  2. Hu Y (2004) A simple chemiluminescence method for determination of chemical oxygen demand values in water. Talanta 63:521–526. doi:10.1016/j.talanta.2003.11.037

    Article  CAS  Google Scholar 

  3. Clark LC. US Pat. 2 913 386, 1959

  4. Wolfbeis OS (2015) Luminescent sensing and imaging of oxygen: Fierce competition to the Clark electrode. BioEssays 37(8):921–928. doi:10.1002/bies.201500002

    Article  CAS  Google Scholar 

  5. Amao Y, Okumura I (2006) Optical Oxygen Sensor (O13). In: Grimes CA, Dickey E, Pishko E (eds) Encyclopedia of Sensors, Chapter 18. American Scientific Publishers, Los Angeles, pp 227--237

  6. Takeuchi Y, Amao Y (2005) Materials for Luminescent Pressure-Sensitive Paint. In: Orellana G, Moreno-Bondi M (eds) Frontiers in Chemical Sensors, vol 3. Springer Series on Chemical Sensors and Biosensors. Springer Berlin Heidelberg, pp 303-322. doi:10.1007/3-540-27757-9_10

  7. Amao Y, Okurab I (2009) Optical oxygen sensor devices using metalloporphyrins. J Porphyrins Phthalocyanines 13:1111–1122

    Article  CAS  Google Scholar 

  8. Li XM, Wong HY. In Transient D.O. Measurement Using a Computerized Membrane Electrode. Horizons of Biochemical Engineering, University of Tokyo Press: Tokyo, 1987; pp. 13–220.

  9. Li XM, Wong HY. US Pat. 4 921 582, 1990.

  10. Martin CS, Dadamos TRL, Teixeira MFS (2012) Development of an electrochemical sensor for determination of dissolved oxygen by nickel-salen polymeric film modified electrode. Sensors Actuators B Chem 175:111–117. doi:10.1016/j.snb.2011.12.098

    Article  CAS  Google Scholar 

  11. Rahim A, Santos LSS, Barros SBA, Kubota LT, Gushikem Y (2013) Dissolved O2 sensor based on cobalt(II) phthalocyanine immobilized in situ on electrically conducting carbon ceramic mesoporous SiO2/C material. Sensors Actuators B Chem 177:231–238. doi:10.1016/j.snb.2012.10.110

    Article  CAS  Google Scholar 

  12. Lin ZY, Liu Y, Chen GN (2008) TiO2/Nafion film based electrochemiluminescence for detection of dissolved oxygen. Electrochem Commun 10(10):1629–1632. doi:10.1016/j.elecom.2008.08.015

    Article  CAS  Google Scholar 

  13. Tsai TH, Thiagarajan S, Chen SM (2010) Green Synthesis of Silver Nanoparticles Using Ionic Liquid and Application for the Detection of Dissolved Oxygen. Electroanalysis 22(6):680–687. doi:10.1002/elan.200900410

    Article  CAS  Google Scholar 

  14. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. doi:10.1126/science.1102896

    Article  CAS  Google Scholar 

  15. Huang Y, Liang JJ, Chen YS (2012) An Overview of the Applications of Graphene-Based Materials in Supercapacitors. Small 8(12):1805–1834. doi:10.1002/smll.201102635

    Article  CAS  Google Scholar 

  16. Ratinac KR, Yang WR, Gooding JJ, Thordarson P, Braet F (2011) Graphene and Related Materials in Electrochemical Sensing. Electroanalysis 23(4):803–826. doi:10.1002/elan.201000545

    Article  CAS  Google Scholar 

  17. Coleman JN (2009) Liquid-Phase Exfoliation of Nanotubes and Graphene. Adv Funct Mater 19(23):3680–3695. doi:10.1002/adfm.200901640

    Article  CAS  Google Scholar 

  18. Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of Graphene and Related Materials. Chem Rev 114(14):7150–7188. doi:10.1021/cr500023c

    Article  CAS  Google Scholar 

  19. Rameshkumar P, Praveen R, Ramaraj R (2015) Electroanalysis of oxygen reduction and formic acid oxidation using reduced graphene oxide/gold nanostructures modified electrode. J Electroanal Chem 754:118–124. doi:10.1016/j.jelechem.2015.07

    Article  CAS  Google Scholar 

  20. Türk K-K, Kruusenberg I, Mondal J, Rauwel P, Kozlova J, Matisen L, Sammelselg V, Tammeveski K (2015) Oxygen electroreduction on MN4-macrocycle modified graphene/multi-walled carbon nanotube composites. J Electroanal Chem 756:69–76. doi:10.1016/j.jelechem.2015.08.014

    Article  Google Scholar 

  21. Hummers WS, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80(6):1339–1339. doi:10.1021/Ja01539a017

    Article  CAS  Google Scholar 

  22. Oliveira RM, Santos NG, Alves LA, Lima KCMS, Kubota LT, Damos FS, Luz RCS (2015) Highly sensitive p-nitrophenol determination employing a new sensor based on N-Methylphenazonium methyl sulfate and graphene: Analysis in natural and treated waters. Sensors Actuators B Chem 221:740–749. doi:10.1016/j.snb.2015.07.014

    Article  Google Scholar 

  23. Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7(11):3394–3398. doi:10.1021/Nl0717715

    Article  CAS  Google Scholar 

  24. Peng S, Fan X, Li S, Zhang J (2013) Green synthesis and characterization of grafite oxide by orthogonal experiment. J Chil Chem Soc 58(4):2213–2217. doi:10.4067/S0717-97072013000400067

    Article  CAS  Google Scholar 

  25. Qiu J, Wang G, Zhao C (2008) Preparation and characterization of amphiphilic multi-walled carbon nanotubes. J Nanoparticle Res 10(4):659–663. doi:10.1007/s11051-007-9298-3

    Article  CAS  Google Scholar 

  26. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130. doi:10.1063/1.1674108

    Article  CAS  Google Scholar 

  27. Li M, Bo X, Zhang Y, Han C, Guo L (2014) Comparative study on the oxygen reduction reaction electrocatalytic activities of iron phthalocyanines supported on reduced graphene oxide, mesoporous carbon vesicle, and ordered mesoporous carbono. J Power Sources 264:114–122

    Article  CAS  Google Scholar 

  28. Alvaro M, Atienzar P, de la Cruz P, Delgado JL, Troiani V, Garcia H, Langa F, Palkar A, Echegoyen L (2006) Synthesis, photochemistry, and electrochemistry of single-wall carbon nanotubes with pendent pyridyl groups and of their metal complexes with zinc porphyrin. Comparison with pyridyl-bearing fullerenes. J Am Chem Soc 128(20):6626–6635. doi:10.1021/ja057742i

    Article  CAS  Google Scholar 

  29. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. 2nd edn. Wiley, New York 20

  30. Wang J (1994) Analytical electrochemistry. VCH, New York

    Google Scholar 

  31. Luz RCS, Damos FS, Tanaka AA, Kubota LT (2006) Dissolved oxygen sensor based on cobalt tetrasulphonated phthalocyanine immobilized in poly-llysine film onto glassy carbon electrode. Sensors Actuators B Chem 114(2):1019–1027. doi:10.1016/j.snb.2005.07.063

    Article  CAS  Google Scholar 

  32. Damos FS, Luz RCS, Tanaka AA, Kubota LT (2010) Dissolved oxygen amperometric sensor based on layer-by-layer assembly using host-guest supramolecular interactions. Anal Chim Acta 664(2):144–150. doi:10.1016/j.aca.2010.02.011

    Article  CAS  Google Scholar 

  33. Santos LSS, Landers R, Gushikem Y (2011) Application of manganese (II) phthalocyanine synthesized in situ in the SiO2/SnO2 mixed oxide matrix for determination of dissolved oxygen by electrochemical techniques. Talanta 85(2):1213–1216. doi:10.1016/j.talanta.2011.06.003

    Article  CAS  Google Scholar 

  34. Yang JQ, Chen JW, Zhou YK, Wu KB (2011) A nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand. Sensors Actuators B Chem 153(1):78–82. doi:10.1016/j.snb.2010.10.015

    Article  CAS  Google Scholar 

  35. Zhou YS, Jing T, Hao QL, Zhou YK, Mei SR (2012) A sensitive and environmentally friendly method for determination of chemical oxygen demand using NiCu alloy electrode. Electrochim Acta 74:165–170. doi:10.1016/j.electacta.2012.04.048

    Article  CAS  Google Scholar 

  36. Wang J, Li K, Yang C, Wang YL, Jia JP (2012) Ultrasound electrochemical determination of chemical oxygen demand using boron-doped diamond electrode. Electrochem Commun 18:51–54. doi:10.1016/j.elecom.2012.02.002

    Article  Google Scholar 

  37. Ma CJ, Tan F, Zhao HM, Chen S, Quan X (2011) Sensitive amperometric determination of chemical oxygen demand using Ti/Sb-SnO2/PbO2 composite electrode. Sensors Actuators B Chem 155(1):114–119. doi:10.1016/j.snb.2010.11.033

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), INCT-Bioanalitica and Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA) for financial support and fellowships. SMS is a scholarship student from CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico and INCT-Bioanalítica, Instituto Nacional de Ciência e Tecnologia em Bioanalítica – Brazil.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Flavio S. Damos or Rita C. S. Luz.

Ethics declarations

The author(s) declare that they have no competing interests

Electronic supplementary material

ESM 1

(DOCX 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, S.M., Aguiar, L.F., Carvalho, R.M.S. et al. A glassy carbon electrode modified with an iron N4-macrocycle and reduced graphene oxide for voltammetric sensing of dissolved oxygen. Microchim Acta 183, 1251–1259 (2016). https://doi.org/10.1007/s00604-016-1750-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1750-6

Keywords

Navigation