Skip to main content
Log in

Determination of 2,4-dichlorophenol in water samples using a chemiluminescence system consisting of graphene quantum dots, rhodamine B and cerium(IV) ion

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report that the presence of graphene quantum dots (GQDs) causes an ~60-fold enhancement of the chemiluminescence (CL) caused by the reaction between rhodamine B (RhB) and Ce(IV) ion. A possible CL mechanism is established on the basis of fluorescence, CL and UV-vis spectra. It is suggested that the GQDs facilitate the oxidation of RhB and accelerate the generation of the CL emitting species, thus leading to stronger CL intensity. We further observed that 2,4-dichlorophenol at even trace levels exerts a diminishing effect on this CL system. This finding was exploited to design a CL method for determination of 2,4-dichlorophenol in the 0.1 to 5.0 μM concentration range, with a detection limit of 25 nM. The method was applied to the analysis of spiked real water and wastewater samples and gave satisfactory results.

Upon addition of GQDs, the CL from reaction between RhB and Ce(IV) is greatly enhanced. The addition of 2,4-dichlorophenol to this system decreases the CL intensity and this the basis of analytical method for determination of this compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636

    Article  CAS  Google Scholar 

  2. Li L, Wu G, Yang G, Peng J, Zhao J, Zhu J-J (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5(3):4015–4039

    Article  CAS  Google Scholar 

  3. Lin L, Rong M, Luo F, Chen D, Wang Y, Chen X (2014) Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends Anal Chem 54:83–102

    Article  CAS  Google Scholar 

  4. Ocaña-González JA, Ramos-Payán M, Fernández-Torres R, Villar Navarro M, Bello-López MÁ (2014) Application of chemiluminescence in the analysis of wastewaters – a review. Talanta 122:214–222

    Article  Google Scholar 

  5. Amjadi M, Manzoori JL, Hallaj T (2014) Chemiluminescence of graphene quantum dots and its application to the determination of uric acid. J Lumin 153:73–78

    Article  CAS  Google Scholar 

  6. Hallaj T, Amjadi M, Manzoori JL, Shokri R (2015) Chemiluminescence reaction of glucose-derived graphene quantum dots with hypochlorite, and its application to the determination of free chlorine. Microchim Acta 182:789–796

    Article  CAS  Google Scholar 

  7. Hao M, Liu N, Ma Z (2013) A new luminol chemiluminescence sensor for glucose based on pH-dependent graphene oxide. Analyst 138:4393–4397

    Article  CAS  Google Scholar 

  8. Dong Y, Dai R, Dong T, Chi Yand Chen G (2014) Photoluminescence, chemiluminescence and anodic electrochemiluminescence of hydrazide-modified graphene quantum dots. Nanoscale 6:11240–11245

    Article  CAS  Google Scholar 

  9. Xue W, Lin Z, Chen H, Lu C, Lin J-M (2011) Enhancement of ultraweak chemiluminescence from reaction of hydrogen peroxide and bisulfite by water-soluble carbon nanodots. J Phys Chem C 115:21707–21714

    Article  CAS  Google Scholar 

  10. Lin Z, Xue W, Chen H, Lin J-M (2012) Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal Chem 83:8245–8251

    Article  Google Scholar 

  11. Lin Z, Xue W, Chen H, Lin J-M (2011) Classical oxidant induced chemiluminescence of fluorescent carbon dots. Chem Commun 48:1051–1053

    Article  Google Scholar 

  12. Amjadi M, Manzoori JL, Hallaj T, Sorouraddin MH (2014) Direct chemiluminescence of carbon dots induced by potassium ferricyanide and its analytical application. Spectrochim Acta A 122:715–720

    Article  CAS  Google Scholar 

  13. Teng P, Xie J, Long Y, Huang X, Zhu R, Wang X (2014) Chemiluminescence behavior of the carbon dots and the reduced state carbon dots. J Lumin 146:464–469

    Article  CAS  Google Scholar 

  14. Amjadi M, Manzoori JL, Hallaj T, Sorouraddin MH (2014) Strong enhancement of the chemiluminescence of the cerium(IV)-thiosulfate reaction by carbon dots, and its application to the sensitive determination of dopamine. Microchim Acta 181:671–677

    Article  CAS  Google Scholar 

  15. Jiang J, He Y, Li S, Cui H (2012) Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem Commun 48:9634–9636

    Article  CAS  Google Scholar 

  16. Dou X, Lin Z, Chen H, Zheng Y, Lu C, Lin J-M (2013) Production of superoxide anion radicals as evidence for carbon nanodots acting as electron donors by the chemiluminescence method. Chem Commun 49(52):5871–5873

    Article  CAS  Google Scholar 

  17. Shi J, Lu C, Yan D, Ma L (2013) High selectivity sensing of cobalt in HepG2 cells based on necklace model microenvironment-modulated carbon dot-improved chemiluminescence in Fenton-like system. Biosens Bioelectron 45:58–64

    Article  CAS  Google Scholar 

  18. Zhou Y, Xing G, Chen H, Ogawa N, Lin J-M (2012) Carbon nanodots sensitized chemiluminescence on peroxomonosulfate–sulfite–hydrochloric acid system and its analytical applications. Talanta 99:471–477

    Article  CAS  Google Scholar 

  19. Amjadi M, Manzoori JL, Hallaj T (2015) A novel chemiluminescence method for determination of bisphenol abased on the carbon dot-enhanced HCO 3–H2O2 system. J Lumin 158:160–164

    Article  CAS  Google Scholar 

  20. Wang DM, Gao MX, Gao PF, Yang H, Huang CZ (2013) Carbon nanodots-catalyzed chemiluminescence of luminol: a singlet oxygen-induced mechanism. J Phys Chem C 117:19219–19225

    Article  CAS  Google Scholar 

  21. Lin Z, Dou X, Li H, Chen Q, Lin J-M (2014) Silicon-hybrid carbon dots strongly enhance the chemiluminescence of luminol. Microchim Acta 181:805–811

    Article  CAS  Google Scholar 

  22. Olaniran AO, Igbinosa EO (2011) Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere 83:1297–1306

    Article  CAS  Google Scholar 

  23. Feng Q, Li H, Zhang Z, Lin J-M (2011) Gold nanoparticles for enhanced chemiluminescence and determination of 2,4-dichlorophenol in environmental water samples. Analyst 136:2156–2160

    Article  CAS  Google Scholar 

  24. Wu H, Ding Z, Peng M, Song Q (2012) Quantum dot induced phototransformation of 2,4-dichlorophenol, and its subsequent chemiluminescence reaction. Microchim Acta 178:203–210

    Article  CAS  Google Scholar 

  25. Zhang J, Song Q, Hu X, Zhang E, Gao H (2008) Dye-sensitized phototransformation of chlorophenols and their subsequent chemiluminescence reactions. J Lumin 128:1880–1885

    Article  CAS  Google Scholar 

  26. Feng Q-Z, Zhao L-X, Yan W, Ji F, Wei Y-L, Lin J-M (2008) Molecularly imprinted solid-phase extraction and flow-injection chemiluminescence for trace analysis of 2,4-dichlorophenol in water samples. Anal Bioanal Chem 391:1073–1079

    Article  CAS  Google Scholar 

  27. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738–4743

    Article  CAS  Google Scholar 

  28. Dong Y, Li G, ZhouN WR, Chi Y, Chen G (2012) Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal Chem 84:8378–8382

    Article  CAS  Google Scholar 

  29. He Y, Wang X, SunJ JS, Chen H, Gao F, Wang L (2014) Fluorescent blood glucose monitor by hemin-functionalized graphene quantum dots based sensing system. Anal Chim Acta 810:71–78

    Article  CAS  Google Scholar 

  30. He Y, Sun J, Feng D, Chen H, Gao F, Wang L (2015) Graphene quantum dots: highly active bifunctional nanoprobes for nonenzymatic photoluminescence detection of hydroquinone. Biosens Bioelectron 74:418–422

    Article  CAS  Google Scholar 

  31. Wu Z, Li W, Chen J, Yu C (2014) A graphene quantum dot-based method for the highly sensitive and selective fluorescence turn on detection of biothiols. Talanta 119:538–543

    Article  CAS  Google Scholar 

  32. Ma Y, Jin X, Zhou M, Zhang Z, Teng X, Chen H (2003) Chemiluminescence behavior based on oxidation reaction of rhodamine B with cerium (IV) in sulfuric acid medium. Anal Chim Acta 489:173–181

    Article  CAS  Google Scholar 

  33. Hasanin THA, Tsunemine Y, Tsukahara S, Okamoto Y, Fujiwara T (2011) Chemiluminescence from an oxidation reaction of rhodamine B with cerium (IV) in a reversed micellar medium of cetyltrimethylammonium chloride in 1-hexanol–cyclohexane/water. Anal Sci 27:297–304

    Article  CAS  Google Scholar 

  34. Hassanzadeh J, Amjadi M, Manzoori JL, Sorouraddin MH (2013) Gold nanorods-enhanced rhodamine B-permanganate chemiluminescence and its analytical application. Spectrochim Acta A 107:296–302

    Article  CAS  Google Scholar 

  35. Amjadi M, Hassanzadeh J, Manzoori JL (2014) Determination of cyanide using a chemiluminescence system composed of permanganate, rhodamine B, and gold nanoparticles. Microchim Acta 181:1851–1856

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from Iran National Science Foundation (INSF 93024484).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Amjadi.

Electronic supplementary material

ESM 1

(DOC 336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallaj, T., Amjadi, M. Determination of 2,4-dichlorophenol in water samples using a chemiluminescence system consisting of graphene quantum dots, rhodamine B and cerium(IV) ion. Microchim Acta 183, 1219–1225 (2016). https://doi.org/10.1007/s00604-016-1749-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1749-z

Keywords

Navigation