Skip to main content
Log in

Graphene oxide-assisted synthesis of bismuth nanosheets for catalytic stripping voltammetric determination of iron in coastal waters

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The article describes the synthesis of bismuth nanosheets (BiNSs) in the presence of a small quantity of graphene oxide (GO) which is helpful for the formation of two-dimensional BiNSs and improves dispersity. The material, when placed on a glassy carbon electrode (GCE), is shown to enable catalytic stripping voltammetric determination of total dissolved iron without the need for adding a complexing agent. The average thickness and length of the BiNSs are 3 to 4 nm and 100 to 200 nm, respectively. The unique nanostructure of the BiNSs, the ability of Bi to form alloys with metal, and the current amplification of the catalytic system make the modified GCE an excellent choice for electrochemical determination of Fe(III). Under the optimal conditions, the electrode has a linear response to Fe(III) in the 0.01 to 20 μM concentrations range, with a lower detection limit of 2.3 nM. The electrode was successfully applied to the sensitive determination of Fe(III) in coastal waters.

Bismuth nanosheets were prepared by graphene oxide-assisted synthesis and utilized for catalytic stripping voltammetric determination of trace Fe(III) in coastal waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D’Autréaux B, Tucker NP, Dixon R, Spiro S (2005) A non-haem iron centre in the transcription factor N or R senses nitric oxide. Nature 437:769–7725

    Article  Google Scholar 

  2. Liu X, Theil EC (2005) Ferritins: dynamic management of biological iron and oxygen chemistry. Acc Chem Res 38:167–175

    Article  CAS  Google Scholar 

  3. Sean R, Lynch MD (2005) The impact of iron fortification on nutritional anaemia. Best Pract Res Clin Haematol 18:333–346

    Article  Google Scholar 

  4. Sunda GW, Huntsman SA (1995) Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar Chem 50:189–206

    Article  CAS  Google Scholar 

  5. Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Kudela R (1996) A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383:495–501

    Article  CAS  Google Scholar 

  6. Wells ML, Trick CG (2004) Controlling iron availability to phytoplankton in iron-replete coastal waters. Mar Chem 86:1–13

    Article  CAS  Google Scholar 

  7. Freschi GP, Freschi CD, Neto JG (2008) Evaluation of different rhodium modifiers and coatings on the simultaneous determination of As, Bi, Pb, Sb, Se and of Co, Cr, Cu, Fe, Mn in milk by electrothermal atomic absorption spectrometry. Microchim Acta 161:129–135

    Article  CAS  Google Scholar 

  8. Jong J, Schoemann V, Lannuzel D, Tison JL, Mattielli N (2008) High-accuracy determination of iron in seawater by isotope dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using nitrilotriacetic acid chelating resin for pre-concentration and matrix separation. Anal Chim Acta 623:126–139

    Article  Google Scholar 

  9. Yang C, Hu Z, Yang J, Gao H (2012) Novel phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes for solid phase extraction of iron, copper and lead ions from aqueous medium. Microchim Acta 176:359–366

    Article  Google Scholar 

  10. Asan A, Andac M, Isildak I, Tinkilic N (2008) Flow injection spectrophotometric determination of iron(III) using diphenylamine-4-sulfonic acid sodium salt. Chem Pap 62:345–349

    Article  CAS  Google Scholar 

  11. Cha KW, Park KW (1998) Determination of iron(III) with salicylic acid by the fluorescence quenching method. Talanta 46:1567–1571

    Article  CAS  Google Scholar 

  12. Lu G, Yao X, Wu X, Zhang T (2001) Determination of the total iron by chitosan-modified glassy carbon electrode. Microchim J 69:81–87

    Article  CAS  Google Scholar 

  13. Lu M, Compton RG (2013) Voltammetric determination of iron(III) in water. Electroanalysis 25:1123–1129

    Article  CAS  Google Scholar 

  14. Mashhadizadeh MH, Shosei IS, Monadi N (2004) A novel ion selective membrane potentiometric sensor for direct determination of Fe(III) in the presence of Fe(II). Talanta 64:1048–1052

    Article  CAS  Google Scholar 

  15. Van den Berg CMG (2006) Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene. Anal Chem 78:156–163

    Article  Google Scholar 

  16. Croot PL, Johansson M (2000) Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-Thiazolylazo)-p-cresol (TAC). Electroanalysis 12:565–576

    Article  CAS  Google Scholar 

  17. Obata H, Van den Berg CMG (2001) Determination of picomolar levels of iron in seawater using catalytic cathodic stripping voltammetry. Anal Chem 73:2522–2528

    Article  CAS  Google Scholar 

  18. Gledhill M, Van den Berg CMG (1994) Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar Chem 47:41–54

    Article  CAS  Google Scholar 

  19. Wang J (2005) Stripping analysis at bismuth electrodes: a review. Electroanalysis 17:1341–1346

    Article  CAS  Google Scholar 

  20. Wang ZQ, Liu G, Zhang LN, Wang H (2012) A bismuth modified hybrid binder carbon paste electrode for electrochemical stripping detection of trace heavy metals in soil. Int J Electrochem Sci 7:12326–12339

    CAS  Google Scholar 

  21. Pauliukaite R, Hočevar SB, Ogorevc B, Wang J (2004) Characterization and applications of a bismuth bulk electrode. Electroanalysis 16:719–723

    Article  CAS  Google Scholar 

  22. Torma F, Kádár M, Tóth K, Tatár E (2008) Nafion/2,2-bipyridyl-modified bismuth film electrode for anodic stripping voltammetry. Anal Chim Acta 619:173–182

    Article  CAS  Google Scholar 

  23. Li Y, Sun G, Zhang Y, Ge C, Bao N, Wang Y (2014) A glassy carbon electrode modified with bismuth nanotubes in a silsesquioxane framework for sensing of trace lead and cadmium by stripping voltammetry. Microchim Acta 181:751–757

    Article  CAS  Google Scholar 

  24. Lee GJ, Lee HM, Rhee CK (2007) Bismuth nano-powder electrode for trace analysis of heavy metals using anodic stripping voltammetry. Electrochem Commun 9:2514–2518

    Article  CAS  Google Scholar 

  25. Bobrowski A, Nowak K, Zarebski J (2005) Application of a bismuth film electrode to the voltammetric determination of trace iron using a Fe(III)–TEA–BrO3 catalytic system. Anal Bioanal Chem 382:1691–1697

    Article  CAS  Google Scholar 

  26. Segura R, Toral M, Arancibia V (2008) Determination of iron in water samples by adsorptive stripping voltammetry with a bismuth film electrode in the presence of 1-(2-piridylazo)-2-naphthol. Talanta 75:973–977

    Article  CAS  Google Scholar 

  27. Lin M, Pan D, Hu X, Li F, Han H (2015) A tin-bismuth alloy electrode for the cathodic stripping voltammetric determination of iron in coastal waters. Anal Methods 7:5169–5174

    Article  CAS  Google Scholar 

  28. Ugo P, Moretto LM, De Boni A, Scopece P, Mazzocchin GA (2002) Iron (II) andiron (III) determination by potentiometry and ion-exchange voltammetry ationomer-coated electrodes. Anal Chim Acta 474:147–160

    Article  CAS  Google Scholar 

  29. Gholivand MB, Geravandi B, Parvin MH (2011) Anodic stripping voltammetric determination of iron(II) at a carbon paste electrode modified with dithiodianiline (DTDA) and gold nanoparticles (GNP). Electroanalysis 23:1345–1351

    Article  CAS  Google Scholar 

  30. Anguiano DI, Garcia MG, Ruiz C, Torres J, Alonso-Lemus I, Alvarez-Contreras L, Verde-Gomez Y, Bustos E (2012) Electrochemical detection of iron in a lixiviant solution of polluted soil using a modified glassy carbon electrode. Int J Electrochem 739408:6

    Google Scholar 

  31. Lin M, Han H, Pan D, Zhang H, Su Z (2015) Voltammetric determination of total dissolved iron in coastal waters using a glassy carbon electrode modified with reduced graphene oxide, Methylene Blue and gold nanoparticles. Microchim Acta 182:805–813

    Article  CAS  Google Scholar 

  32. Lin M, Pan D, Hu X, Han H, Li F (2015) Titanium carbide nanoparticles/ion-exchange polymer-based sensor for catalytic stripping determination of trace iron in coastal waters. Sensors Actuators B 219:164–170

    Article  CAS  Google Scholar 

  33. Zarebski J (1977) Alkaline triethanoloamine-bromate solutions as supporting electrolytes for the determination of iron in trace amounts by differential pulse polarography. Chem Anal 22:1049–1051

    CAS  Google Scholar 

  34. Peng B, Shen YP, Gao ZT, Zhou M, Ma YJ, Zhao SG (2015) Determination of total iron in water and food by dispersive liquid-liquid microextraction coupled with microvolume UV-vis spectrophotometry. Food Chem 176:188–293

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (41276093), the Youth Innovation Promotion Association (2011170) and Outstanding Young Scientists of CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Pan.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Pan, D., Lin, M. et al. Graphene oxide-assisted synthesis of bismuth nanosheets for catalytic stripping voltammetric determination of iron in coastal waters. Microchim Acta 183, 855–861 (2016). https://doi.org/10.1007/s00604-015-1733-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1733-z

Keywords

Navigation