Skip to main content
Log in

Silver nanocluster based sensitivity amplification of a quartz crystal microbalance gene sensor

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The article describes a quartz crystal microbalance (QCM) biosensor for the determination of nucleic acids via a DNA-templated assembly of silver nanoclusters (AgNCs) which represents a novel way for efficient signal amplification. A QCM was modified with probe DNA to specifically capture target DNA. Then, DNA-templated AgNCs were assembled to enhance the sensitivity of the QCM sensor via Ag(I) ions attached to the DNA skeleton, this followed by hydroquinone-induced reductive formation of the AgNCs. TEM and AFM were used to further confirm the formation of DNA-templated AgNCs. The results showed that frequency response of QCM sensor is up to 87 times larger when using this mode of amplification. A linear relationship was obtained between the frequency response and DNA concentration over the 0.6 to 130 nM range, with a 0.1 nM detection limit. In our perception, this scheme for improved sensitivity provides a straightforward and widely applicable tool for sensing DNA.

A novel quartz crystal microbalance biosensor was developed for highly sensitive and label-free detection of nucleic acid through DNA-templated assembly of silver nanoclusters as an efficient signal amplifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goda T, Maeda Y, Miyahara Y (2012) Simultaneous monitoring of protein adsorption kinetics using a quartz crystal microbalance and field-effect transistor integrated device. Anal Chem 84(17):7308–7314

    Article  CAS  Google Scholar 

  2. Diltemiz SE, Hur D, Kecili R, Ersoz A, Say R (2013) New synthesis method for 4-MAPBA monomer and using for the recognition of IgM and mannose with MIP-based QCM sensors. Analyst 138(5):1558–1563

    Article  CAS  Google Scholar 

  3. Thorn C, Gustafsson H, Olsson L (2013) QCM-D as a method for monitoring enzyme immobilization in mesoporous silica particles. Microporous Mesoporous Mater 176:71–77

    Article  CAS  Google Scholar 

  4. Caruso F, Rodda E, Furlong DN, Niikura K, Okahata Y (1997) Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development. Anal Chem 69(11):2043–2049

    Article  CAS  Google Scholar 

  5. Tang W, Wang D, Xu Y, Li N, Liu F (2012) A self-assembled DNA nanostructure-amplified quartz crystal microbalance with dissipation biosensing platform for nucleic acids. Chem Commun 48(53):6678–6680

    Article  CAS  Google Scholar 

  6. Wang R, Li Y (2013) Hydrogel based QCM aptasensor for detection of avian influenza virus. Biosensors Bioelectronics 42:148–155

    Article  Google Scholar 

  7. Ma F, Rehman A, Liu H, Zhang J, Zhu S, Zeng X (2015) Glycosylation of quinone-fused polythiophene for reagentless and label-free detection of E. Coli. Anal Chem 87(3):1560–1568

    Article  CAS  Google Scholar 

  8. Su XD, Wu YJ, Knoll W (2005) Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization. Biosensors Bioelectronics 21(5):719–726

    Article  CAS  Google Scholar 

  9. Pang LL, Li JS, Jiang JH, Le Y, Shen GL, Yu RQ (2007) A novel detection method for DNA point mutation using QCM based on Fe3O4/Au core/shell nanoparticle and DNA ligase reaction. Sensors Actuators B-Chemical 127(2):311–316

    Article  CAS  Google Scholar 

  10. Wang DZ, Chen GJ, Wang HM, Tang W, Pan W, Li N, Liu F (2013) A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation. Biosensors Bioelectronics 48:276–280

    Article  CAS  Google Scholar 

  11. Dong Z-M, Zhao G-C (2013) A theophylline quartz crystal microbalance biosensor based on recognition of RNA aptamer and amplification of signal. Analyst 138(8):2456–2462

    Article  CAS  Google Scholar 

  12. Papadakis G, Gizeli E (2014) Screening for mutations in BRCA1 and BRCA2 genes by measuring the acoustic ratio with QCM. Anal Methods 6(2):363–371

    Article  CAS  Google Scholar 

  13. Feng K, Li J, Jiang J-H, Shen G-L, Yu R-Q (2007) QCM detection of DNA targets with single-base mutation based on DNA ligase reaction and biocatalyzed deposition amplification. Biosensors Bioelectronics 22(8):1651–1657

    Article  CAS  Google Scholar 

  14. Akter R, Rhee CK, Rahman MA (2015) A highly sensitive quartz crystal microbalance immunosensor based on magnetic bead-supported bienzymes catalyzed mass enhancement strategy. Biosensors Bioelectronics 66:539–546

    Article  CAS  Google Scholar 

  15. Lu L, Wu J, Li M, Kang T, Cheng S (2015) Detection of DNA damage by exploiting the distance dependence of the electrochemiluminescence energy transfer between quantum dots and gold nanoparticles. Microchim Acta 182(1-2):233–239

    Article  CAS  Google Scholar 

  16. Jiang X, Wang R, Wang Y, Su X, Ying Y, Wang J, Li Y (2011) Evaluation of different micro/nanobeads used as amplifiers in QCM immunosensor for more sensitive detection of E. coli O157:H7. Biosensors Bioelectronics 29(1):23–28

    Article  CAS  Google Scholar 

  17. Ye M, Zhang Y, Li H, Zhang Y, Tan P, Tang H, Yao S (2009) A novel method for the detection of point mutation in DNA using single-base-coded CdS nanoprobes. Biosensors Bioelectronics 24(8):2339–2345

    Article  CAS  Google Scholar 

  18. Wu L, Wang JS, Ren JS, Qu XG (2014) Ultrasensitive telomerase activity detection in circulating tumor cells based on DNA metallization and sharp SolidState electrochemical techniques. Adv Funct Mater 24(18):2727–2733

    Article  CAS  Google Scholar 

  19. Wang J, Rincon O, Polsky R, Dominguez E (2003) Electrochemical detection of DNA hybridization based on DNA-templated assembly of silver cluster. Electrochem Commun 5(1):83–86

    Article  CAS  Google Scholar 

  20. Gao F, Lei J, Ju H (2013) Label-free surface-enhanced raman spectroscopy for sensitive DNA detection by DNA-mediated silver nanoparticle growth. Anal Chem 85(24):11788–11793

    Article  CAS  Google Scholar 

  21. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391(6669):775–778

    Article  CAS  Google Scholar 

  22. Richter J, Seidel R, Kirsch R, Mertig M, Pompe W, Plaschke J, Schackert HK (2000) Nanoscale palladium metallization of DNA. Adv Mater 12(7):507

    Article  CAS  Google Scholar 

  23. B.Gray H, Bertini I (1994) Bioinorganic Chemistry.

  24. Lin Y, Tao Y, Pu F, Ren J, Qu X (2011) Combination of graphene oxide and thiol-activated DNA metallization for sensitive fluorescence turn-on detection of cysteine and their use for logic gate operations. Adv Funct Mater 21(23):4565–4572

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (no. 21375048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peihui Yang.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Lu, P., Zhu, M. et al. Silver nanocluster based sensitivity amplification of a quartz crystal microbalance gene sensor. Microchim Acta 183, 881–887 (2016). https://doi.org/10.1007/s00604-015-1728-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1728-9

Keywords

Navigation