Skip to main content
Log in

Polymer-coated magnetic nanospheres for preconcentration of organochlorine and pyrethroid pesticides prior to their determination by gas chromatography with electron capture detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Magnetic polymer nanospheres were prepared and used as adsorbents for the extraction of organochlorine and pyrethroid pesticides from water samples. The adsorbents were synthesized by miniemulsion polymerization of N-vinylimidazole and divinylbenzene and simultaneous encapsulation of oleic acid-coated Fe3O4 nanoparticles. Following desorption with ethyl acetate, the target analytes β-hexachlorocyclohexane, δ-hexachlorocyclohexane, p,p’-DDE, heptachlor, trans-chlordan, cis-chlordan, bifenthrin, β-cypermethrin, δ-methrin, λ-cyhalothrin and esfenvalerate were determined by gas chromatography with electron capture detection. Desorption conditions, extraction times and sample volume were screened by Plackett-Burman design and optimized by Box-Behnken design. Under the optimum conditions, the organochlorines can be quantified in the 20 to 400 ng L−1 concentration range, and the pyrethroids in the 400 to 4000 ng L−1 concentration range. The recoveries of organochlorines and pyrethroids from spiked real water samples are between 77.6 and 97.3 %, with relative standard deviations between 0.9 and 10.0 %. The method for magnetic solid phase extraction described here is fast, simple and friendly to the environment.

Fe3O4 nanoparticles coated with oleic acid (OA) were covered with a copolymer prepared from N-vinylimidazole (VI) and divinylbenzene (DB), and then used for magnetic solid phase extraction of organochlorine and pyrethroid pesticides. Recoveries from spiked water samples range from 77.6 to 97.3 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Borga K, Gabrielsen GW, Skaare JU (2001) Biomagnification of organochlorines along a Barents Sea food chain. Environ Pollut 113(2):187–198

    Article  CAS  Google Scholar 

  2. Longanathan BG, Kannan K (1994) Global oganochlorine contamination trends: an overview. Ambio 23(3):187–191

    Google Scholar 

  3. Zhou R, Zhu L, Yang K, Chen Y (2006) Distribution of organochlorine pesticides in surface water and sediments from Qiantang River, East China. J Hazard Mater 137(1):68–75

    Article  CAS  Google Scholar 

  4. X-h L, Wang W, Wang J, Cao X-l, Wang X-f, Liu J-c, Liu X-f, Xu X-b, Jiang X-n (2008) Contamination of soils with organochlorine pesticides in urban parks in Beijing, China. Chemosphere 70(9):1660–1668

    Article  Google Scholar 

  5. Berzas Nevado JJ, Rodriguez Martin-Doimeadios RC, Guzman Bernardo FJ, Rodriguez Farinas N, Gonzalez Cogolludo JM, Castro Osma JA (2010) Multiresidue determination of organochlorines in fish oil by GC MS: a new strategy in the sample preparation. Talanta 81(3):887–893

    Article  Google Scholar 

  6. Li J, Liu D, Wu T, Zhao W, Zhou Z, Wang P (2014) A simplified procedure for the determination of organochlorine pesticides and polychlorobiphenyls in edible vegetable oils. Food Chem 151:47–52

    Article  CAS  Google Scholar 

  7. Yu Y, Li Y, Shen Z, Yang Z, Mo L, Kong Y, Lou I (2014) Occurrence and possible sources of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) along the Chao River, China. Chemosphere 114:136–143

    Article  CAS  Google Scholar 

  8. Grung M, Lin Y, Zhang H, Steen AO, Huang J, Zhang G, Larssen T (2015) Pesticide levels and environmental risk in aquatic environments in China - A review. Environ Int 81:87–97

    Article  CAS  Google Scholar 

  9. Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci Total Environ 511:123–137

    Article  CAS  Google Scholar 

  10. Zhang H, Bayen S, Kelly BC (2015) Multi-residue analysis of legacy POPs and emerging organic contaminants in Singapore’s coastal waters using gas chromatography-triple quadrupole tandem mass spectrometry. Sci Total Environ 523:219–232

    Article  CAS  Google Scholar 

  11. Derbalah A, Ismail A, Hamza A, Shaheen S (2014) Monitoring and remediation of organochlorine residues in water. Water Environ Res 86(7):584–593

    Article  CAS  Google Scholar 

  12. Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Ann Rev of Entomol: 45–66

  13. Feo ML, Eljarrat E, Barcelo D (2010) A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples. J Chromatogr A 1217(15):2248–2253

    Article  CAS  Google Scholar 

  14. Feo ML, Ginebreda A, Eljarrat E, Barcelo D (2010) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hydrol 393(3–4):156–162

    Article  CAS  Google Scholar 

  15. Hladik ML, Kuivila KM (2009) Assessing the occurrence and distribution of pyrethroids in water and suspended sediments. J Agric Food Chem 57(19):9079–9085

    Article  CAS  Google Scholar 

  16. Richter BE, Jones BA, Ezzell JL, Porter NL, Avdalovic N, Pohl C (1996) Accelerated solvent extraction: a technique for sample preparation. Anal Chem 68(6):1033–1039

    Article  CAS  Google Scholar 

  17. Herrera-Herrera AV, Asensio-Ramos M, Hernandez-Borges J, Rodriguez-Delgado MA (2010) Dispersive liquid-liquid microextraction for determination of organic analytes. Trac-Trends Anal Chem 29(7):728–751

    Article  CAS  Google Scholar 

  18. Beltran J, Lopez FJ, Hernandez F (2000) Solid-phase microextraction in pesticide residue analysis. J Chromatogr A 885(1–2):389–404

    Article  CAS  Google Scholar 

  19. Capriotti AL, Cavaliere C, Lagana A, Piovesana S, Samperi R (2013) Recent trends in matrix solid-phase dispersion. Trac-Trends Anal Chem 43:53–66

    Article  CAS  Google Scholar 

  20. Safarikova M, Safarik I (1999) Magnetic solid-phase extraction. J Magn Magn Mater 194(1–3):108–112

    Article  CAS  Google Scholar 

  21. He Z, Wang P, Liu D, Zhou Z (2014) Hydrophilic-lipophilic balanced magnetic nanoparticles: preparation and application in magnetic solid-phase extraction of organochlorine pesticides and triazine herbicides in environmental water samples. Talanta 127:1–8

    Article  CAS  Google Scholar 

  22. Gao Q, Zheng H-B, Luo D, Ding J, Feng Y-Q (2012) Facile synthesis of magnetic one-dimensional polyaniline and its application in magnetic solid phase extraction for fluoroquinolones in honey samples. Anal Chim Acta 720:57–62

    Article  CAS  Google Scholar 

  23. Yu X, Sun Y, Jiang C, Sun X, Gao Y, Wang Y, Zhang H, Song D (2012) Magnetic solid-phase extraction of five pyrethroids from environmental water samples followed by ultrafast liquid chromatography analysis. Talanta 98:257–264

    Article  CAS  Google Scholar 

  24. Aziz-Zanjani MO, Mehdinia A (2014) A review on procedures for the preparation of coatings for solid phase microextraction. Microchim Acta 181(11–12):1169–1190

    Article  CAS  Google Scholar 

  25. Huang X, Wang Y, Liu Y, Yuan D (2013) Preparation of magnetic poly(vinylimidazole-co-divinylbenzene) nanoparticles and their application in the trace analysis of fluoroquinolones in environmental water samples. J Sep Sci 36(19):3210–3219

    CAS  Google Scholar 

  26. Yan S, Gao Z, Fang Y, Cheng Y, Zhou H, Wang H (2007) Characterization and quality assessment of binding properties of malachite green molecularly imprinted polymers prepared by precipitation polymerization in acetonitrile. Dyes Pigments 74:572–577

    Article  CAS  Google Scholar 

  27. Huang B, Zhou X, Chen J, Wu G, Lu X (2015) Determination of malachite green in fish based on magnetic molecularly imprinted polymer extraction followed by electrochemiluminescence. Talanta 142:228–234

    Article  CAS  Google Scholar 

  28. Wang C, Hu X, Guan P, Qian L, Wu D, Li J (2015) Superparamagnetic molecularly imprinting polymers for adsorbent and separation pentapeptides by surface ATRP. Sep Sci Technol 50(12):1768–1775

    Article  CAS  Google Scholar 

  29. Zuo HG, Zhu JX, Zhan CR, Shi L, Xing M, Guo P, Ding Y, Yang H (2015) Preparation of malathion MIP-SPE and its application in environmental analysis. Environ Monit Assess 187(7)

  30. Lin S, Gan N, Zhang J, Chen X, Cao Y, Li T (2015) A novel reductive graphene oxide-based magnetic molecularly imprinted poly (ethylene-co-vinyl alcohol) polymers for the enrichment and determination of polychlorinated biphenyls in fish samples. J Mol Recog 28(6):359–368

    Article  CAS  Google Scholar 

  31. Chen F, Zhang J, Wang M, Kong J (2015) Magnetic molecularly imprinted polymers synthesized by surface-initiated reversible addition-fragmentation chain transfer polymerization for the enrichment and determination of synthetic estrogens in aqueous solution. J Sep Sci 38(15):2670–2676

    Article  CAS  Google Scholar 

  32. Shao Y, Zhou L, Bao C, Ma J (2015) A facile approach to the fabrication of rattle-type magnetic carbon nanospheres for removal of methylene blue in water. Carbon 89:378–391

    Article  CAS  Google Scholar 

  33. Pérez RA, Albero B, Tadeo JL, Sánchez-Brunete C (2015) Oleate functionalized magnetic nanoparticles as sorbent for the analysis of polychlorinated biphenyls in juices. Microchimica Acta

  34. Safari M, Yamini Y, Tahmasebi E, Ebrahimpour B (2015) Magnetic nanoparticle assisted supramolecular solvent extraction of triazine herbicides prior to their determination by HPLC with UV detection. Microchimica Acta

  35. Shulai L, Forcada J (2006) Preparation and characterization of magnetic polymeric composite particles by miniemulsion polymerization. J Polym Sci A Polym Chem 44(13):4187–4203

    Article  Google Scholar 

  36. Li C, Chen L (2013) Determination of pyrethroid pesticides in environmental waters based on magnetic titanium dioxide nanoparticles extraction followed by HPLC analysis. Chromatographia 76(7–8):409–417

    Article  CAS  Google Scholar 

  37. Fang G, Chen W, Yao Y, Wang J, Qin J, Wang S (2012) Multi-residue determination of organophosphorus and organochlorine pesticides in environmental samples using solid-phase extraction with cigarette filter followed by gas chromatography–mass spectrometry. J Sep Sci 35(4):534–540

    Article  CAS  Google Scholar 

  38. Ozcan S, Tor A, Aydin ME (2012) Application of magnetic nanoparticles to residue analysis of organochlorine pesticides in water samples by GC/MS. J Aoac Int 95(5):1343–1349(1347)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the National Natural Science Foundation of China (J1210064,21277171,21307155), Chinese Universities Scientific Fund 2015LX005 and Beijing Nova program YETP0323.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1032 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., He, Z., Liu, X. et al. Polymer-coated magnetic nanospheres for preconcentration of organochlorine and pyrethroid pesticides prior to their determination by gas chromatography with electron capture detection. Microchim Acta 183, 1187–1194 (2016). https://doi.org/10.1007/s00604-015-1725-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1725-z

Keywords

Navigation