Skip to main content
Log in

Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope

Abstract

This article reports on an electrochemical sensor for thiourea. It is based on a glassy carbon electrode (GCE) modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles. The modified GCE demonstrated highly catalytic activity in terms of thiourea oxidation. The peak potential is shifted to negative values compared to a GCE coated with silver nanoparticles only. The electrode was characterized by linear sweep voltametry, cyclic voltammetry and chronoamperometry, and thiourea was determined by differential pulse voltammetry in aqueous buffer of pH 7.0 resulting in two linear response ranges of 0.001 − 69.4 and 69.4 − 833.3 μM and the limit of detection of 0.1 nM. The method was applied to the determination of thiourea in copper refinery electrolyte, orange juice and tap water samples. The recoveries ranged from 96.9 to 108.0 %.

A glassy carbon electrode was modified with silver nanoparticles (SNP−GCE) using continuous cyclic potential in solution of nitric acid and AgNO3. Oxadiazole - modified SNP−GCE (OSNP−GCE) was prepared by the self-assembling technique directly onto the SNP−GCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Krzewska S, Pajdowski L, Podsiadly H, Podsiadly J (1984) Electrochemical determination of thiourea and glue in the industrial copper electrolyte. Metall Trans 15:451–459

    Article  Google Scholar 

  2. Suarez D, Olson F (1992) Nodulation of electrodeposited copper in the presence of thiourea. J Appl Electrochem 22:1002–1010

    Article  CAS  Google Scholar 

  3. Abbasi S, Khani H, Hosseinzadeh L, Safari Z (2010) Determination of thiourea in fruit juice by a kinetic spectrophotometric method. J Hazard Mater 174:257–262

    Article  CAS  Google Scholar 

  4. Hoseney R, Finney K (1964) Spectrophotometric determination of urea, thiourea, and certain of their substitution products with p-dimethylaminobenzaldehyde and diacetylmonoxime. Anal Chem 36:2145–2148

    Article  CAS  Google Scholar 

  5. Mandrou B, Brun S, Kingkate A (1977) Quantitative determination of thiourea in citrus fruits. J Assoc Off Ana Chem 60:699–701

    CAS  Google Scholar 

  6. Kargosha K, Khanmohammadi M, Ghadiri M (2001) Fourier transform infrared spectrometric determination of thiourea in the presence of sulphur dioxide in aqueous solution. Anal Chim Acta 437:139–143

    Article  CAS  Google Scholar 

  7. Kargosha K, Khanmohammadi M, Ghadiri M (2001) Vapour phase fourier transform infrared spectrometric determination of thiourea. Analyst 126:1432–1435

    Article  CAS  Google Scholar 

  8. Li WH, Wang YZ (2006) Determination of thiourea by flow injection with chemiluminescence. Physical testing and chemical analysis (Part B: Chemical Analysis) 42:111

    CAS  Google Scholar 

  9. Fan X, Wang S, Chen F, Wang X (2012) FI-Chemiluminescence determination of thiourea [J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis) 12:31

    Google Scholar 

  10. Bowley HJ, Crathorne EA, Gerrard DL (1986) Quantitative determination of thiourea in aqueous solution in the presence of sulphur dioxide by Raman spectroscopy. Analyst 111:539–542

    Article  CAS  Google Scholar 

  11. Rethmeier J, Neumanna G, Stumpf C, Rabenstein A, Vogt C (2001) Determination of low thiourea concentrations in industrial process water and natural samples using reversed-phase high-performance liquid chromatography. J Chromatogr A 934:129–134

    Article  CAS  Google Scholar 

  12. Li X, Wang J, Zhao Z, Wu G, Pang Y (2009) Determination of thiourea in flour by high performance liquid chromatography [J]. Sci Technol Food Ind 5:99

    Google Scholar 

  13. Stara V, Kopanica M (1984) Adsorptive stripping voltammetric determination of thiourea and thiourea derivatives. Anal Chim Acta 159:105–110

    Article  CAS  Google Scholar 

  14. Pápay M, Tóth K, Pungor E (1971) Potentiometric determination of thiourea with a sulphide-selective membrane electrode. Anal Chim Acta 56:291–296

    Article  Google Scholar 

  15. Akeneev YA, Zakharova EA, Slepchenko GB, Pikula NP (2005) Voltammetric determination of thiourea in copper refinery electrolytes. J Anal Chem 60:514–517

    Article  CAS  Google Scholar 

  16. Spataru N, Spataru T, Fujishima A (2005) Voltammetric determination of thiourea at conductive diamond electrodes. Electroanal 17:800–805

    Article  CAS  Google Scholar 

  17. Tian L, Gao Y, Li L, Wu W, Sun D, Lu J, Li T (2013) Determination of thiourea using a carbon paste electrode decorated with copper oxide nanoparticles. Microchim Acta 180:607–612

    Article  CAS  Google Scholar 

  18. Corb I, Manea F, Radovan C, Pop A, Burtica G, Malchev P, Picken S, Schoonman J (2007) Carbon-based composite electrodes: preparation, characterization and application in electroanalysis. Sensors 7:2626–2635

    Article  CAS  Google Scholar 

  19. Levent A, Keskin E, Yardım Y, Şentürk Z (2011) Electrooxidation of thiourea and its square-wave voltammetric determination using pencil graphite electrode. Rev Anal Chem 30:45–51

    Article  CAS  Google Scholar 

  20. Sezgintürk MK, Dinçkaya E (2010) Development of a biosensor for controlling of thiourea in fruit juices. Food Bioprocess Tech 3:128–134

    Article  Google Scholar 

  21. Ríos A, Zougagh M, Bouri M (2013) Magnetic (nano) materials as an useful tool for sample preparation in analytical methods. A review. Anal Methods 5:4558–4573

    Article  Google Scholar 

  22. Khodaveisi J, Dadfarnia S, Haji Shabani AM, Rohani Moghadam M, Hormozi-Nezhad MR (2015) Artificial neural network assisted kinetic spectrophotometric technique for simultaneous determination of paracetamol and p-aminophenol in pharmaceutical samples using localized surface plasmon resonance band of silver nanoparticle. Spectrochim Acta A 138:474–480

    Article  CAS  Google Scholar 

  23. Nasirizadeh N, Aghayizadeh MM, Bidoki M, Yazdanshenas ME (2013) A novel sensor of quinazolin derivative self-assembled monolayers over silver nanoparticle for the determination of hydroxylamine. Int J Electrochem Sci 8:11264–11277

    CAS  Google Scholar 

  24. Goyal RN (2015) Gold nanoparticles decorated poly-melamine modified glassy carbon sensor for the voltammetric estimation of domperidone in pharmaceuticals and biological fluids. Talanta 141:53–59

    Article  Google Scholar 

  25. Van Hieu N, Duc NAP, Trung T, Tuan MA, Chien ND (2010) Gas-sensing properties of tin oxide doped with metal oxides and carbon nanotubes: a competitive sensor for ethanol and liquid petroleum gas. Sensor Actuat B-Chem 144:450–456

    Article  Google Scholar 

  26. Narang J, Chauhan N, Jain P, Pundir CS (2012) Silver nanoparticle/multiwalled carbon nanotube/polyaniline film for amperometric glutathione biosensor. Int J Biol Macromol 50:672–678

    Article  CAS  Google Scholar 

  27. Wang G, Wang W, Wu J, Liu H, Jiao S, Fang B (2009) Self-assembly of a silver nanoparticle modified electrode and its electrocatalysis on neutral red. Microchim Acta 164:149–155

    Article  CAS  Google Scholar 

  28. Fakhari AR, Saeed Hosseiny Davarani S, Ahmar H, Hasheminasab K, Khavasi HR (2009) A facile electrochemical method for the synthesis of 5-phenyl-1,3,4-oxadiazol-2-ylthio-benzene-1,2-diol derivatives. J Heterocyclic Chem 46:443–446

    Article  CAS  Google Scholar 

  29. Ju H, Shen C (2001) Electrocatalytic reduction and determination of dissolved oxygen at a poly (nile blue) modified electrode. Electroanal 13:789–793

    Article  CAS  Google Scholar 

  30. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101:19–28

    Article  CAS  Google Scholar 

  31. Nasirizadeh N, Zare HR (2009) Differential pulse voltammetric simultaneous determination of noradrenalin and acetaminophen using a hematoxylin biosensor. Talanta 80:656–663

    Article  CAS  Google Scholar 

  32. Andrieux CP, Saveant JM (1978) Heterogeneous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions. J Electroanal Chem Interfacial Electrochem 93:163–168

    Article  CAS  Google Scholar 

  33. Bard AJ, Faulkner LR (2001) Fundamentals and applications. Electrochemical methods, 2nd edn. Wiley, New York

    Google Scholar 

  34. Abbasi S, Khani H, Bagher Gholivand N, Naghipour A, Farmany A, Abbasi F (2009) A kinetic method for the determination of thiourea by its catalytic effect in micellar media. Spectrochim Acta A 72:327–331

    Article  Google Scholar 

  35. de Oliveira AN, de Santana H, Zaia HCTBV, Zaia DAM (2004) A study of reaction between quinones and thiourea: determination of thiourea in orange juice. J Food Compos Anal 17:165–177

    Article  Google Scholar 

  36. Kurzawa JK, Janowicz K (2005) Used of stopped-flow technique for investigation and determination of thiourea and its N-methyl derivatives as inducer for the iodine-azide reaction. Anal Biol Chem 382:1584–1589

    Article  CAS  Google Scholar 

  37. Arab Chamjangali M, Goudarzi, Ghochani Moghadam A, Amin AH (2015) An on-line spectrophotometric determination of trace amounts of thiourea in tap water, orange juice, and orange peel samples using multi-channel flow injection analysis. Spectrochim Acta A 149:580–587

    Article  CAS  Google Scholar 

  38. Zhang C, Jiang Y, Zhang D, Shan Y, Yang G (2015) Electrochemical determination of thiourea using thiophene derivatives-modified glassy carbon electrodes. ECS Electrochem Lett 4:B1–B3

    Article  CAS  Google Scholar 

  39. Manea F, Radovan C, Schoonman J (2006) Amperometric determination of thiourea in alkaline media on a copper oxide–copper electrode. J Appl Electrochem 36:1075–1081

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Rohani Moghadam.

Ethics declarations

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohani Moghadam, M., Akbarzadeh, S. & Nasirizadeh, N. Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles. Microchim Acta 183, 1069–1077 (2016). https://doi.org/10.1007/s00604-015-1723-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1723-1

Keywords

Navigation