Skip to main content
Log in

Fluorescent determination of poly(hexamethylene guanidine) via the aggregates it forms with quantum dots and magnetic nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope

Abstract

The authors report that the cationic polymer-oligomer poly(hexamethylene guanidine) (PHMG) in the form of its hydrochloride induces the formation of mixed aggregates composed of anionic magnetiс nanoparticles (magNPs), PHMG and anionic quantum dots (QDs). The magNPs consisted of polymer-coated magnetite nanoparticles, and the QDs consisted of polymer-coated CdSe@CdS/ZnS nanoparticles with an emission maximum at 617 nm. This finding is exploited in a semi-quantitative method for the determination of PHMG. The protocol includes magnetic separation of the mixed aggregates (magNPs/PHMG/QDs) from the sample and excess QDs, redispersion of the aggregates in water, and measurement of fluorescence intensity. The signal is proportional to the concentration of PHMG in the 0.05 to 0.2 mg L−1 concentration range, with intra-day RSDs of up to 27 %. The limit of detection (LOD) of PHMG in spiked run-off waters, swimming pool water and wastewater is 23 μg L−1. This PHMG assay is selective in that high concentrations of surfactants and inorganic salts are tolerated. Polyethyleneimine and poly(diallyldimethylammonium chloride) also cause the formation of mixed aggregates but only at higher concentrations. Both a fluorometer and a digital camera (using a 365-nm LED as a light source) were used to measure fluorescence. In case of using a digital camera, the LOD is 40 μg L−1 and the intraday RSDs are up to 23 %. The method is sensitive, fairly selective and rather simple.

Cationic polymer binds anionic quantum dots and anionic magnetic nanoparticles; mixed aggregates are thus formed. After magnetic separation from the excess of quantum dots, their fluorecence is measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oulé MK, Quinn K, Dickman M, Bernier AM, Rondeau S, Moissac DD, Boisvert A, Diop L (2012) Akwaton, polyhexamethylene-guanidine hydrochloride-based sporicidal disinfectant: a novel tool to fight bacterial spores and nosocomial infections. J Med Microbiol 61:1421–1427

    Article  Google Scholar 

  2. Antonik LM, Barkova NP, Khabibulina AG, Lopyrev VA (2009) Synthesis and antiseptic and antidote activity of polyhexamethyleneguanidine hydroxyethylidenediphosphonate salt. Pharm Chem J 43:84–86, 0091.150X/09/4302.0084

    Article  CAS  Google Scholar 

  3. Krotov YuA, Karelin AO, Loit AO et al. (2000) Mir i Semya, St.-Petersburg (in Russian). Maximum allowable concentrations of chemicals in the environment. Handbook. Ed. See also http://meganorm.ru/Data2/1/4293841/4293841858.htm (accessed September, 2015).

  4. Efimov KM, Danilina NO, Ovcharenko EO et al (2004) Method for quantitative determination of the concentration of polyhexamethyleneguanidine hydrochloride in water. Russ Pat No 2252413. http://www.findpatent.ru/patent/225/2252413.html (accessed September, 2015)

  5. Chmilenko TS, Galimbievsky EA, Chmilenko FA et al (2010) Formation of bromophenol red ion associates and their interaction with polyhexamethyleneguanidine in aqueous solutions. Methods Objects Chem Anal 5:19–28, http://www.moca.net.ua/10/pdf/010510-19-28.pdf. Accessed September, 2015

    Google Scholar 

  6. Slepchenko GB, Moiseeva ES, Khazanov VA et al. (2008) Method for quantitative determination of Anavidin by stripping voltammetry, Russ. Pat. No 2381501. http://www.freepatent.ru/patents/2381501. Accessed September, 2015

  7. Apyari VV, Dmitrienko SG, Zolotov YuA et al. (2011) A method for determining polyhexamethyleneguanidine hydrochloride, Russ. Pat. No 2460998 http://www.freepatent.ru/patents/2460998. Accessed September, 2015

  8. Arkhipova VV, Apyari VV, Dmitrienko SG (2015) Determination of polyhexamethyleneguanidine hydrochloride using gold nanoparticles and polyurethane foam. Moscow Univ Chem Bull 70:28–33. doi:10.3103/S0027131415010022

    Article  Google Scholar 

  9. Artemyeva AA, Samarina TO, Sharov AV, Abramchuk SS, Ovcharenko EO, Dityuk AI, Efimov KM, Beklemishev MK (2015) Highly sensitive determination of poly(hexamethylene guanidine) by rayleigh scattering using aggregation of silver nanoparticles. Microchim Acta 182:965–973. doi:10.1007/s00604-014-1411-6

    Article  CAS  Google Scholar 

  10. Kaur R, Hasan A, Iqbal N, Alam S, Saini MK, Raza SK (2014) Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: a review. J Sep Sci 37:1805–1825. doi:10.1002/jssc.201400256

    Article  CAS  Google Scholar 

  11. Xie L, Jiang R, Zhu F, Liu H, Ouyang G (2014) Application of functionalized magnetic nanoparticles in sample preparation. Anal Bioanal Chem 406:377–399. doi:10.1007/s00216-013-7302-6

    Article  CAS  Google Scholar 

  12. Tennico HY, Hutanu D, Koesdjojo MT, Bartel CM, Remcho VT (2010) On-chip aptamer-based sandwich assay for thrombin detection employing magnetic beads and quantum dots. Anal Chem 82:5591–5597. doi:10.1021/ac101269u

    Article  CAS  Google Scholar 

  13. Bruno JG, Richarte AM, Phillips T, Savage AA, Sivils JC, Greis A, Mayo MW (2014) Development of a fluorescent enzyme-linked DNA aptamer-magnetic bead sandwich assay and portable fluorometer for sensitive and rapid leishmania detection in sandflies. J Fluoresc 24:267–277. doi:10.1007/s10895-013-1315-6

    Article  CAS  Google Scholar 

  14. Krejcova L, Hynek D, Guran R, Michalek P, Moulick A, Kopel P, Tmejova K, Hoai NV, Adam V, Hubalek J (2014) Beads based electrochemical assay for detection of hemagglutinin labeled by two different types of cadmium quantum dots. Int J Electrochem Sci 9:3349–3363, http://www.electrochemsci.org/papers/vol9/90703349.pdf

    Google Scholar 

  15. Uddayasankar U, Zhang Z, Shergill RT, Gradinaru CC, Krull UJ (2014) Isolation of monovalent quantum dot – nucleic acid conjugates using magnetic beads. Bioconjug Chem 25:1342–1350. doi:10.1021/bc5002032

    Article  CAS  Google Scholar 

  16. Sun H, Wang M, Wang J, Tian M, Wang H, Sun Z, Huang P (2015) Development of magnetic separation and quantum dots labeled immunoassay for the detection of mercury in biological samples. J Trace Elem Med Biol 30:37–42. doi:10.1016/j.jtemb.2015.01.009

    Article  CAS  Google Scholar 

  17. Yang H, Qin L, Wang Y, Zhang B, Liu Z, Ma H, Lu J, Huang X, Shi D, Hu Z (2015) Detection of Mycobacterium tuberculosis based on H37Rv binding peptides using surface functionalized magnetic microspheres coupled with quantum dots—a nano detection method for Mycobacterium tuberculosis. Int J Nanomed 10:77–88. doi:10.2147/IJN.S71700

    CAS  Google Scholar 

  18. Hwang HJ, Nam JJ, Yang SI, Kwon J-H, Oh HB (2013) MALDI-TOF analysis of polyhexamethylene guanidine (PHMG) oligomers used as a commericial antibacterial humidifier disinfectant. Bull Korean Chem Soc 34:1708–1714. doi:10.5012/bkcs.2013.34.6.1708

    Article  CAS  Google Scholar 

  19. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248. doi:10.1109/TMAG.1981.1061188

    Article  Google Scholar 

  20. Smith AM, Duan H, Rhyner MN, Ruan G, Nie S (2006) A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys Chem Chem Phys 8:3895–3903. doi:10.1039/B606572B

    Article  CAS  Google Scholar 

  21. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738–4743. doi:10.1016/j.carbon.2012.06.002

    Article  CAS  Google Scholar 

  22. Gembitsky PA (2000) Eco-friendly polymer biocides. materials and technologies. (Ekologichesky bezopasnye polimernye biotsidy. Materialy i tekhnologii.) Collection of articles. Moscow (1) 5

  23. Methods for the determination of the residual concentration of disinfectant “DeFlok” in water (by PHMG-HCl). http://deflok.ru/wp-content/uploads/2013/05/DeFlok_Prilozhenie.pdf. Accessed 30 October, 2015

  24. Rudnev AV, Dzherayan TG (2006) Determination of polyhexamethyleneguanidine by capillary electrophoresis. J Analyt Chem 61:1002–1005. doi:10.1134/S1061934806100091

    Article  CAS  Google Scholar 

  25. Chmilenko FA, Korobova IV, Mikulenko OV (2008) Potentiometric sensors for the determination of water-soluble polyelectrolytes. J Analyt Chem 63:590–595. doi:10.1134/S1061934808060130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Russian Science Foundation for the financial support (grant No 14-23-00012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail K. Beklemishev.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 721 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Likhachev, K.V., Ovcharenko, E.O., Dityuk, A.I. et al. Fluorescent determination of poly(hexamethylene guanidine) via the aggregates it forms with quantum dots and magnetic nanoparticles. Microchim Acta 183, 1079–1087 (2016). https://doi.org/10.1007/s00604-015-1720-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1720-4

Keywords

Navigation