Microchimica Acta

, Volume 183, Issue 2, pp 791–797 | Cite as

Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks

  • Su-Su Huang
  • Li Liu
  • Li-Ping Mei
  • Jia-Ying Zhou
  • Fei-Ying Guo
  • Ai-Jun Wang
  • Jiu-Ju FengEmail author
Original Paper


Bimetallic gold-copper nanochain networks (AuCu NCNs) were prepared by a single-step wet-chemical approach using metformin as a growth-directing agent. The formation mechanism was investigated in detail, and the AuCu NCNs were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The nanocrystals were deposited on glassy carbon electrode and this resulted in a highly sensitive sensor for nitrite. Features include a low working potential (best at 0.684 V vs. SCE), fair sensitivity (17.55 μA mM−1), a wide linear range (0.01 to 4.0 mM), a low detection limit (0.2 μM, S/N = 3), and superior selectivity as compared to other sensors.

Graphical Abstract:

Gold-copper nanochain networks were prepared by a metformin-assisted one-pot wet-chemical method. The nanocrystals were used to fabricate a nitrite sensor with low detection limit, high selectivity, good reproducibility and stability.


Metformin Bimetallic structures Cyclic voltammetry High-resolution TEM Annular dark-field scanning TEM 



This work was financially supported by National Natural Science Foundation of China (No. 21475118, 21175118 and 21275130) and Zhejiang province of undergraduate scientific and technological innovation project (New Talents Program, No. 2015404004 for S.S. Huang).

Supplementary material

604_2015_1717_MOESM1_ESM.doc (10.9 mb)
ESM 1 (DOC 10.8 mb)


  1. 1.
    Yang S, Xia B, Zeng X, Luo S, Wei W, Liu X (2010) Fabrication of DNA functionalized carbon nanotubes/Cu2+ complex by one-step electrodeposition and its sensitive determination of nitrite. Anal Chim Acta 667:57CrossRefGoogle Scholar
  2. 2.
    Wang P, Mai Z, Dai Z, Li Y, Zou X (2009) Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite. Biosens Bioelectron 24:3242CrossRefGoogle Scholar
  3. 3.
    Afkhami A, Soltani-Felehgari F, Madrakian T, Ghaedi H (2014) Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens Bioelectron 51:379CrossRefGoogle Scholar
  4. 4.
    Radhakrishnan S, Krishnamoorthy K, Sekar C, Wilson J, Kim SJ (2014) A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl Catal B 148–149:22CrossRefGoogle Scholar
  5. 5.
    Mirvish SS (1995) Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett 93:17CrossRefGoogle Scholar
  6. 6.
    Zhou L, Wang J-P, Gai L, Li D-J, Li Y-B (2013) An amperometric sensor based on ionic liquid and carbon nanotube modified composite electrode for the determination of nitrite in milk. Sensors Actuators B Chem 181:65CrossRefGoogle Scholar
  7. 7.
    Aydın A, Ercan Ö, Taşcıoğlu S (2005) A novel method for the spectrophotometric determination of nitrite in water. Talanta 66:1181CrossRefGoogle Scholar
  8. 8.
    Liu H, Yang G, Abdel-Halim E, Zhu J-J (2013) Highly selective and ultrasensitive detection of nitrite based on fluorescent gold nanoclusters. Talanta 104:135CrossRefGoogle Scholar
  9. 9.
    Ito K, Takayama Y, Makabe N, Mitsui R, Hirokawa T (2005) Ion chromatography for determination of nitrite and nitrate in seawater using monolithic ODS columns. J Chromatogr A 1083:63CrossRefGoogle Scholar
  10. 10.
    Sudarvizhi A, Siddiqha ZA, Pandian K (2014) Single step synthesis of graphene oxide protected silver nanoparticles using aniline as reducing agent and study its application on electrocatalytic detection of nitrite in food samples. J Chem Applied Biochem 1:101Google Scholar
  11. 11.
    Salimi A, Kurd M, Teymourian H, Hallaj R (2014) Highly sensitive electrocatalytic detection of nitrite based on SiC nanoparticles/amine terminated ionic liquid modified glassy carbon electrode integrated with flow injection analysis. Sensors Actuators B Chem 205:136CrossRefGoogle Scholar
  12. 12.
    Marlinda A, Pandikumar A, Yusoff N, Huang N, Lim H (2015) Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim Acta 182:1113CrossRefGoogle Scholar
  13. 13.
    Chen K-J, Chandrasekara Pillai K, Rick J, Pan C-J, Wang S-H, Liu C-C, Hwang B-J (2012) Bimetallic PtM (M = Pd, Ir) nanoparticle decorated multi-walled carbon nanotube enzyme-free, mediator-less amperometric sensor for H2O2. Biosens Bioelectron 33:120CrossRefGoogle Scholar
  14. 14.
    Wang J, Zhou H, Fan D, Zhao D, Xu C (2015) A glassy carbon electrode modified with nanoporous PdFe alloy for highly sensitive continuous determination of nitrite. Microchim Acta 182:1055CrossRefGoogle Scholar
  15. 15.
    Dao V-D, Choi Y, Yong K, Larina LL, Shevaleevskiy O, Choi H-S (2015) A facile synthesis of bimetallic AuPt nanoparticles as a new transparent counter electrode for quantum-dot-sensitized solar cells. J Power Sources 274:831CrossRefGoogle Scholar
  16. 16.
    Garcia T, Murillo R, Agouram S, Dejoz A, Lazaro MJ, Torrente-Murciano L, Solsona B (2012) Highly dispersed encapsulated AuPd nanoparticles on ordered mesoporous carbons for the direct synthesis of H2O2 from molecular oxygen and hydrogen. Chem Commun 48:5316CrossRefGoogle Scholar
  17. 17.
    Wang G, Xiao L, Huang B, Ren Z, Tang X, Zhuang L, Lu J (2012) AuCu intermetallic nanoparticles: surfactant-free synthesis and novel electrochemistry. J Mater Chem 22:15769CrossRefGoogle Scholar
  18. 18.
    Xu Z, Lai E, Shao-Horn Y, Hamad-Schifferli K (2012) Compositional dependence of the stability of AuCu alloy nanoparticles. Chem Commun 48:5626CrossRefGoogle Scholar
  19. 19.
    Shibu Joseph ST, Ipe BI, Pramod P, Thomas KG (2006) Gold nanorods to nanochains: Mechanistic investigations on their longitudinal assembly using α,ω-alkanedithiols and interplasmon coupling. J Phys Chem B 110:150CrossRefGoogle Scholar
  20. 20.
    Wang N, Han Y, Xu Y, Gao C, Cao X (2015) Detection of H2O2 at the nanomolar level by electrode modified with ultrathin AuCu nanowires. Anal Chem 87:457CrossRefGoogle Scholar
  21. 21.
    Dang Y-Q, Li H-W, Wang B, Li L, Wu Y (2009) Selective detection of trace Cr3+ in aqueous solution by using 5,5′-dithiobis (2-nitrobenzoic acid)-modified gold nanoparticles. ACS Appl Mater Inter 1:1533CrossRefGoogle Scholar
  22. 22.
    Khanal S, Bhattarai N, McMaster D, Bahena D, Velazquez-Salazar JJ, Jose-Yacaman M (2014) Highly monodisperse multiple twinned AuCu-Pt trimetallic nanoparticles with high index surfaces. Phys Chem Chem Phys 16:16278CrossRefGoogle Scholar
  23. 23.
    Ding X, Zou Y, Jiang J (2012) Au–Cu2S heterodimer formation via oxidization of AuCu alloy nanoparticles and in situ formed copper thiolate. J Mater Chem 22:23169CrossRefGoogle Scholar
  24. 24.
    Wi J-S, Tominaka S, Uosaki K, Nagao T (2012) Porous gold nanodisks with multiple internal hot spots. Phys Chem Chem Phys 14:9131CrossRefGoogle Scholar
  25. 25.
    Jiang Z, Zhang Q, Zong C, Liu B-J, Ren B, Xie Z, Zheng L (2012) Cu–Au alloy nanotubes with five-fold twinned structure and their application in surface-enhanced raman scattering. J Mater Chem 22:18192CrossRefGoogle Scholar
  26. 26.
    He R, Wang Y-C, Wang X, Wang Z, Liu G, Zhou W, Wen L, Li Q, Wang X, Chen X (2014) Facile synthesis of pentacle gold–copper alloy nanocrystals and their plasmonic and catalytic properties. Nat Commun 5:4327Google Scholar
  27. 27.
    Luo M-F, Fang P, He M, Xie Y-L (2005) In situ XRD, raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation. J Mol Catal A Chem 239:243CrossRefGoogle Scholar
  28. 28.
    Li X-R, Li X-L, Xu M-C, Xu J-J, Chen H-Y (2014) Gold nanodendrities on graphene oxide nanosheets for oxygen reduction reaction. J Mater Chem A 2:1697CrossRefGoogle Scholar
  29. 29.
    Goswami N, Giri A, Bootharaju M, Xavier PL, Pradeep T, Pal SK (2011) Copper quantum clusters in protein matrix: potential sensor of Pb2+ ion. Anal Chem 83:9676CrossRefGoogle Scholar
  30. 30.
    Wang W, Leng F, Zhan L, Chang Y, Yang XX, Lan J, Huang CZ (2014) One-step prepared fluorescent copper nanoclusters for reversible pH-sensing. Analyst 139:2990CrossRefGoogle Scholar
  31. 31.
    Wei W, Lu Y, Chen W, Chen S (2011) One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J Am Chem Soc 133:2060CrossRefGoogle Scholar
  32. 32.
    Fang J, Chandrasekharan P, Liu X-L, Yang Y, Lv Y-B, Yang C-T, Ding J (2014) Manipulating the surface coating of ultra-small Gd2O3 nanoparticles for improved T1-weighted MR imaging. Biomaterials 35:1636CrossRefGoogle Scholar
  33. 33.
    Zhang Q-L, Ju K-J, Huang X-Y, Wang A-J, Wei J, Feng J-J (2015) Metformin mediated facile synthesis of AuPt alloyed nanochains with enhanced electrocatalytic properties for alcohol oxidation. Electrochim Acta 182:305CrossRefGoogle Scholar
  34. 34.
    Fu G, Wu K, Lin J, Tang Y, Chen Y, Zhou Y, Lu T (2013) One-pot water-based synthesis of Pt–Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J Phys Chem C 117:9826CrossRefGoogle Scholar
  35. 35.
    Zhao L, Jiang D, Cai Y, Ji X, Xie R, Yang W (2012) Tuning the size of gold nanoparticles in the citrate reduction by chloride ions. Nanoscale 4:5071CrossRefGoogle Scholar
  36. 36.
    Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. small 4:310CrossRefGoogle Scholar
  37. 37.
    Wang H, Dong Z, Na C (2013) Hierarchical carbon nanotube membrane-supported gold nanoparticles for rapid catalytic reduction of p-nitrophenol. ACS Sustain Chem Eng 1:746Google Scholar
  38. 38.
    Yang S, Zeng X, Liu X, Wei W, Luo S, Liu Y, Liu Y (2010) Electrocatalytic reduction and sensitive determination of nitrite at nano-copper coated multi-walled carbon nanotubes modified glassy carbon electrode. J Electroanal Chem 639:181CrossRefGoogle Scholar
  39. 39.
    Biniak S, Pakuła M, Szymański GS, Świątkowski A (1999) Effect of activated carbon surface oxygen- and/or nitrogen-containing groups on adsorption of copper(ii) ions from aqueous solution. Langmuir 15:6117CrossRefGoogle Scholar
  40. 40.
    Sabzi R (2007) Amperometric detection of nitrite on glassy carbon electrode modified with cobalt nitroprusside. Port Electrochim Acta 25:383CrossRefGoogle Scholar
  41. 41.
    Brylev O, Sarrazin M, Roué L, Bélanger D (2007) Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes. Electrochim Acta 52:6237CrossRefGoogle Scholar
  42. 42.
    Huang X, Li Y, Chen Y, Wang L (2008) Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly (3-methylthiophene) composites coated glassy carbon electrode. Sensors Actuators B Chem 134:780CrossRefGoogle Scholar
  43. 43.
    Li S-J, Zhao G-Y, Zhang R-X, Hou Y-L, Liu L, Pang H (2013) A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene. Microchim Acta 180:821CrossRefGoogle Scholar
  44. 44.
    Meng Z, Liu B, Zheng J, Sheng Q, Zhang H (2011) Electrodeposition of cobalt oxide nanoparticles on carbon nanotubes, and their electrocatalytic properties for nitrite electrooxidation. Microchim Acta 175:251CrossRefGoogle Scholar
  45. 45.
    Zhang Y, Luo L, Ding Y, Li L (2009) Electrochemical determination of nitrite in water samples using a glassy carbon electrode modified with didodecyldimethylammonium bromide. Microchim Acta 167:123CrossRefGoogle Scholar
  46. 46.
    Li Y-F, Lv J-J, Zhang M, Feng J-J, Li F-F, Wang A-J (2015) A simple and controlled electrochemical deposition route to urchin-like Pd nanoparticles with enhanced electrocatalytic properties. J Electroanal Chem 738:1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Su-Su Huang
    • 1
  • Li Liu
    • 2
  • Li-Ping Mei
    • 1
  • Jia-Ying Zhou
    • 1
  • Fei-Ying Guo
    • 1
  • Ai-Jun Wang
    • 1
  • Jiu-Ju Feng
    • 1
    Email author
  1. 1.College of Chemistry and Life Science, College of Geography and Environmental ScienceZhejiang Normal UniversityJinhuaChina
  2. 2.Jinhua Agricultural Products Quality Comprehensive Supervision and Inspection CenterJinhuaChina

Personalised recommendations