Skip to main content
Log in

Assembling gold nanorods on a poly-cysteine modified glassy carbon electrode strongly enhance the electrochemical reponse to tetrabromobisphenol A

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Cysteine (Cys) was electrochemically deposited on a glassy carbon electrode (GCE) by cyclic voltammetry. The poly-Cys modified electrode was placed in a solution of gold nanorods (GNRs) to induced self-assembly of the GNRs. The GNRs/poly-Cys/GCEs were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. A voltammetric study on tetrabromobisphenol A (TBBPA) with this GCE showed the current response to be enhanced by a factor of 11 compared to a non-modified GCE. Based on these findings, a square wave voltammetric assay was worked out. Under optimized conditions, a linear relationship between the oxidation peak current and TBBPA is found for the 10 nM to 10 μM concentration range. The detection limit is 3.2 nM (at an S/N ratio of 3). The electrode was successfully applied to the determination of TBBPA in spiked tap water and lake water samples.

Gold nanorods (GNRs) were assembled on the surface of a poly-L-cysteine film - modified glassy carbon electrode and used as a sensing interface for enhancing the voltammetric response towards tetrabromobisphenol A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alaee M, Ariasb P, Sjödinc A, Bergmand A (2003) An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ Int 29:683

    Article  CAS  Google Scholar 

  2. Covaci A, Harrad S, Abdallah MAE, Ali N, Law RJ, Herzke D, deWit CA (2011) Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ Int 37:532

    Article  CAS  Google Scholar 

  3. He MJ, Luo XJ, Yu LH, Liu J, Zhang XJ, Chen SJ, Chen D, Mai BX (2010) Tetrabromobisphenol A and hexabromocyclododecane in birds from an E-waste region in south China: influence of diet on diastereoisomer and enantiomer-specific distribution and trophodynamics. Environ Sci Technol 44:5748

    Article  CAS  Google Scholar 

  4. Wu JP, Zhang Y, Luo XJ, She YZ, Yu LH, Chen SJ, Mai BX (2012) A review of polybrominated diphenyl ethers and alternative brominated flame retardants in wildlife from China: levels, trends, and bioaccumulation characteristics. J Environ Sci 24:183

    Article  CAS  Google Scholar 

  5. Fini JB, Riu A, Debrauwer L, Hillenweck A, Le Mével S, Chevolleau S, Boulahtouf A, Palmier K, Balaguer P, Cravedi JP, Demeneix BA, Zalko D (2012) Parallel biotransformation of tetrabromobisphenol A in Xenopus laevis and mammals: xenopus as a model for endocrine perturbation studies. Toxicol Sci 125:359

    Article  CAS  Google Scholar 

  6. Gosavi RA, Knudsen GA, Birnbaum LS, Pedersen LC (2013) Mimicking of estradiol binding by flame retardants and their metabolites: a crystallographic analysis. Environ Health Perspect 121:1194

    CAS  Google Scholar 

  7. Cope RB, Kacew S, Dourson M (2015) A reproductive, developmental and neurobehavioral study following oral exposure of tetrabromobisphenol A on Sprague-Dawley rats. Toxicology 329:49

    Article  CAS  Google Scholar 

  8. Yang YJ, Li ZL, Zhang J, Yang Y, Shao B (2013) Simultaneous determination of bisphenol A, bisphenol AF, tetrachlorobisphenol A, and tetrabromobisphenol A concentrations in water using on-line solid-phase extraction with ultrahigh-pressure liquid chromatography tandem mass spectrometry. Int J Environ Anal Chem 94:16

    Article  CAS  Google Scholar 

  9. Guo QZ, Du ZX, Zhang Y, Lu XY, Wang JH, Yu WL (2013) Simultaneous determination of bisphenol A, tetrabromobisphenol A, and perfluorooctanoic acid in small household electronics appliances of “prohibition on certain hazardous substances in consumer products” instruction using ultra-performance liquid chromatography-tandem mass spectrometry with accelerated solvent extraction. J Sep Sci 36:667

    Google Scholar 

  10. Dirtu AC, Roosens L, Geens T, Gheorghe A, Neels H, Covaci A (2008) Simultaneous determination of bisphenol A, triclosan, and tetrabromobisphenol A in human serum using solid-phase extraction and gas chromatography-electron capture negative-ionization mass spectrometry. Anal Bioanal Chem 391:1175

    Article  CAS  Google Scholar 

  11. Bu D, Zhuang HS, Yang GX, Ping XY (2015) A real-time immuno-PCR assay for the detection of tetrabromobisphenol A. Anal Methods 7:99

    Article  CAS  Google Scholar 

  12. Zhang ZH, Cai R, Long F, Wang J (2015) Development and application of tetrabromobisphenol A imprinted electrochemical sensor based ongraphene/carbonnanotubes three-dimensional nanocomposites modified carbon electrode. Talanta 134:435

    Article  CAS  Google Scholar 

  13. Chen HJ, Zhang ZH, Cai R, Rao W, Long F (2014) Molecularly imprinted electrochemical sensor based on nickel nanoparticles-graphene nanocomposites modified electrode for determination of tetrabromobisphenol A. Electrochim Acta 117:385

    Article  CAS  Google Scholar 

  14. Chen HJ, Zhang ZH, Cai R, Kong XQ, Chen X, Liu YN, Yao SZ (2013) Molecularly imprinted electrochemical sensor based on a reduced graphene modified carbon electrode for tetrabromobisphenol A detection. Analyst 138:2769

    Article  CAS  Google Scholar 

  15. Zheng XJ, Zhou DZ, Xiang DS, Huang WS, Lu SF (2009) Electrochemical determination of ascorbic acid using the poly-cysteine film-modified electrode. Russ J Electrochem 45:1183

    Article  CAS  Google Scholar 

  16. Wang ZG (2009) Electrochemical investigation of methyl parathion at a poly-L-cysteine film-modified glassy carbon electrode. Chem Anal-Warsaw 54:403

    CAS  Google Scholar 

  17. Huang MR, Ding YB, Li XG, Liu YJ, Xi K, Gao CL, Kumar RV (2014) Synthesis of semiconducting polymer microparticles as solid ionophore with abundant complexing sites for long-life Pb(II) sensors. ACS Appl Mater Interfaces 6:22096

    Article  CAS  Google Scholar 

  18. Li XG, Feng H, Huang MR, Gu GL, Moloney MG (2012) Ultrasensitive Pb(II) potentiometric sensor based on copolyaniline nanoparticles in a plasticizer-free membrane with a long lifetime. Anal Chem 84:134

    Article  CAS  Google Scholar 

  19. Heider EC, Trieu K, Diaz VM, Chumbimuni-Torres KY, Campiglia AD, Duranceau SJ (2013) An indium tin oxide electrode modified with gold nanorods for use in potential-controlled surface Plasmon resonance studies. Microchim Acta 180:1013

    Article  CAS  Google Scholar 

  20. Huang HY, Bai WQ, Dong CX, Guo R, Liu ZH (2015) An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection. Biosens Bioelectron 68:442

    Article  CAS  Google Scholar 

  21. Chang SS, Shih CW, Chen CD, Lai WC, Chris Wang CR (1999) The shape transition of gold nanorods. Langmuir 15:701

    Article  CAS  Google Scholar 

  22. Wang XJ, Zhang LL, Miao LX, Kan MX, Kong LL, Zhang HM (2011) Oxidation and detection of L-cysteine using a modified Au/Nafion/glass carbon electrode. Sci China 54:521

    Article  CAS  Google Scholar 

  23. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280

    Article  CAS  Google Scholar 

  24. Liu ZC, Huang HY, He TB (2013) Large-area 2D gold nanorod arrays assembled on block copolymer templates. Small 9:505

    Article  CAS  Google Scholar 

  25. Zhu ZN, Guo J, Liu WJ, Li ZT, Han B, Zhang W, Tang ZY (2013) Controllable optical activity of gold nanorod and chiral quantum dot assemblies. Angew Chem Int Ed 52:13571

    Article  CAS  Google Scholar 

  26. Kuemin C, Nowack L, Bozano L, Spencer ND, Wolf H (2012) Oriented assembly of gold nanorods on the single-particle level. Adv Funct Mater 22:702

    Article  CAS  Google Scholar 

  27. Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52:355

    Article  CAS  Google Scholar 

  28. Stradins J, Hasanli B (1993) Anodic voltammetry of phenol and benzenethiol derivatives.: part 1. Influence of pH on electro-oxidation potentials of substituted phenols and evaluation of pKa from anodic voltammetry data. J Electroanal Chem 353:57

    Article  CAS  Google Scholar 

  29. Chen WY, Mei LP, Feng JJ, Yuan T, Wang AJ, Yu HY (2015) Electrochemical determination of bisphenol A with a glassy carbon electrode modified with gold nanodendrites. Microchim Acta 182:703

    Article  CAS  Google Scholar 

  30. Deng PH, Xu ZF, Li JH, Kuang YF (2013) Acetylene black paste electrode modified with a molecularly imprinted chitosan film for the detection of bisphenol A. Microchim Acta 180:861

    Article  CAS  Google Scholar 

  31. Li JH, Kuang DZ, Feng YL, Zhang FX, Liu MQ (2011) Voltammetric determination of bisphenol A in food package by a glassy carbon electrodemodified with carboxylated multi-walled carbon nanotubes. Microchim Acta 172:379

    Article  CAS  Google Scholar 

  32. Yin HS, Zhou YL, Ai SY, Han RX, Tang TT, Zhu LS (2010) Electrochemical behavior of bisphenol A at glassy carbon electrode modified with gold nanoparticles, silk fibroin, and PAMAM dendrimers. Microchim Acta 170:99

    Article  CAS  Google Scholar 

  33. Wang FR, Yang JQ, Wu KB (2009) Mesoporous silica-based electrochemical sensor for sensitive determination of environmental hormone bisphenol A. Anal Chim Acta 638:23

    Article  CAS  Google Scholar 

  34. Huang KJ, Liu YJ, Zhang JZ (2015) Aptamer-based electrochemical assay of 17 beta-estradiol using a glassy carbon electrode modified with copper sulfide nanosheets and gold nanoparticles, and applying enzyme-based signal amplification. Microchim Acta 182:409

    Article  CAS  Google Scholar 

  35. Papouchado L, Sandford RW, Petrie G, Adams RN (1975) Anodic oxidation pathways of phenolic compounds part 2. Stepwise electron transfers and coupled hydroxylations. J Electroanal Chem 65:275

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the National Key Basic Research Program of China (973 Program, No. 2015CB352100), Natural Science Foundation of China (No.21275166), Natural Science Foundation of Hubei Province (No.2015CFA092) and Research Foundation of General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (No. 2013Qk286).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunya Li or Kangbing Wu.

Electronic supplementary material

ESM 1

(DOC 28.3 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, G., Hou, X. et al. Assembling gold nanorods on a poly-cysteine modified glassy carbon electrode strongly enhance the electrochemical reponse to tetrabromobisphenol A. Microchim Acta 183, 689–696 (2016). https://doi.org/10.1007/s00604-015-1708-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1708-0

Keywords

Navigation