Skip to main content

Advertisement

Log in

A chemiluminescence resonance energy transfer system composed of cobalt(II), luminol, hydrogen peroxide and CdTe quantum dots for highly sensitive determination of hydroquinone

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This article describes a nonenzymatic chemiluminescence resonance energy transfer (CRET) system for highly sensitive determination of hydroquinone. It was found that the Co(II)-catalyzed luminescence of luminol in pH 11.5 solution is transferred to CdTe quantum dots (QDs) via a CRET mechanism. Hydroquinone is oxidized by H2O2 to benzoquinone which quenches the fluorescence of the QDs. The enhancement is attributed to the adsorption of Co(II) on the surface of the negatively charged QDs. The CRET system was applied in an assay for hydroquinone that has a detection limit of 0.17 nmol L−1. The detection limit was lower by factors between 100 and 250,000 than earlier reported methods. The assay was successfully applied to the quantitation of hydroquinone in (spiked) water samples, with recoveries ranging from 95 % to 106 %, and relative standard deviations between 0.5 % and 2.4 %.

A Co(II)-luminol-H2O2-quantum dot chemiluminescence resonance energy transfer system was developed for highly sensitive detection of hydroquinone. Strong signals were observed due to energy transfer between luminol donor and CdTe quantum dots which is catalyzed by Co(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Qin GX, Zhao SL, Huang Y, Jiang J, Liu YM (2013) Sensitive gold nanoparticles sensing platform based on resonance energy transfer for chemiluminescence light on detection of biomolecules. Biosens Bioelectron 46:119–123. doi:10.1016/j.bios.2013.02.011

    Article  CAS  Google Scholar 

  2. Huang XY, Ren JC (2012) Nanomaterial-based chemiluminescence resonance energy transfer: a strategy to develop new analytical methods. Trac-Trends Anal Chem 40:77–89. doi:10.1016/j.trac.2012.07.014

    Article  CAS  Google Scholar 

  3. Amjadi M, Manzoori JL, Hallaj T, Sorouraddin MH (2014) Strong enhancement of the chemiluminescence of the cerium(IV)-thiosulfate reaction by carbon dots, and its application to the sensitive determination of dopamine. Microchim Acta 181:671–677. doi:10.1007/s00604-014-1172-2

    Article  CAS  Google Scholar 

  4. Han SQ, Wang JB, Jia SZ (2014) Determination of formaldehyde based on the enhancement of the chemiluminescence produced by CdTe quantum dots and hydrogen peroxide. Microchim Acta 181:147–153. doi:10.1007/s00604-013-1083-7

    Article  CAS  Google Scholar 

  5. Chen L, Han HY (2014) Recent advances in the use of near-infrared quantum dots as optical probes for bioanalytical, imaging and solar cell application. Microchim Acta 181: 1485–1495. doi:10.1007/s00604-014-1204-y

  6. Liu F, Deng WP, Zhang Y, Ge SG, Yu JH, Yan M (2014) Highly sensitive hybridization assay using the electrochemiluminescence of an ITO electrode, CdTe quantum dots functionalized with hierarchical nanoporous PtFe nanoparticles, and magnetic graphene nanosheets. Microchim Acta 181:213–222. doi:10.1007/s00604-013-1102-8

    Article  CAS  Google Scholar 

  7. Huang XY, Li L, Qian HF, Dong CQ, Ren JC (2006) A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed 45:5140–5143. doi:10.1002/ange.200601196

    Article  CAS  Google Scholar 

  8. Li Z, W YX, Zhang GX, Xu WB, Han YJ (2010) Chemiluminescence resonance energy transfer in the luminol-CdTe quantum dots conjugates. J Lumin 130: 995–999. doi:10.1016/j.jlumin.2010.01.013

  9. Zhou ZM, Yu Y, Zhao YD (2012) A new strategy for the detection of adenosine triphosphate by aptamer/quantum dot biosensor based on chemiluminescence resonance energy transfer. Analyst 137:4262–4266. doi:10.1039/C2AN35520E

    Article  CAS  Google Scholar 

  10. Liu XQ, Freeman R, Golu E, Willner I (2011) Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes. ACS Nano 5:7648–7655. doi:10.1021/nn202799d

    Article  CAS  Google Scholar 

  11. Wang HQ, Li YQ, Wang JH, Xu Q, Li XQ, Zhao YD (2008) Influence of quantum dot's quantum yield to chemiluminescent resonance energy transfer. Anal Chim Acta 610:68–73. doi:10.1016/j.aca.2008.01.018

    Article  CAS  Google Scholar 

  12. Golub E, Niazov A, Freeman R, Zatsepin M, Willner I (2012) Photoelectrochemical biosensors without external irradiation: probing enzyme activities and DNA sensing using hemin/G-quadruplex-stimulated chemiluminescence resonance energy transfer (CRET) generation of photocurrents. J Phys Chem C 116:13827–13834. doi:10.1021/jp303741x

    Article  CAS  Google Scholar 

  13. Dong SC, Liu FL, Lu C (2013) Organo-modified hydrotalcite-quantum dot nanocomposites as a novel chemiluminescence resonance energy transfer probe. Anal Chem 85:3363–3368. doi:10.1021/ac400041t

    Article  CAS  Google Scholar 

  14. Al-Ogaidi I, Gou HL, Aguilar ZP, Guo SW, Melconian AK, Al-kazaz AKA, Meng FK, Wu NQ (2014) Detection of the ovarian cancer biomarker CA-125 using chemiluminescence resonance energy transfer to graphene quantum dots. Chem Commun 50:1344–1346. doi:10.1039/C3CC47701K

    Article  CAS  Google Scholar 

  15. Tu WW, Wang WJ, Lei JP, Deng SY, Ju HX (2012) Chemiluminescence excited photoelectrochemistry using graphene-quantum dots nanocomposite for biosensing. Chem Commun 48:6535–6537. doi:10.1039/C2CC32866F

    Article  CAS  Google Scholar 

  16. Chen H, Lin L, Lin Z, Lu C, Guo G, Lin JM (2011) Flow-injection analysis of hydrogen peroxide based on carbon nanospheres catalyzed hydrogen carbonate-hydrogen peroxide chemiluminescent reaction. Analyst 136:1957–1964. doi:10.1039/C0AN00815J

    Article  CAS  Google Scholar 

  17. Chen H , Lin L, Li HF, Lin JM (2014) Quantum dots-enhanced chemiluminescence: mechanism and application. Coord Chem Rev 263–264:86–100. doi:10.1016/j.ccr.2013.07.013

    Article  CAS  Google Scholar 

  18. Zhao SL, Huang Y, Shi M, Liu RJ, Liu YM (2010) Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis. Anal Chem 82:2036–2041. doi:10.1021/ac9027643

    Article  CAS  Google Scholar 

  19. Kang J, Li XW, Geng JY, Han L, Tang JL, Jin YR, Zhang YH (2012) Determination of hyperin in seed of cuscuta chinensis Lam. By enhanced chemiluminescence of CdTe quantum dots on calcein/K3Fe(CN)6 system. Food Chem 134:2383–2388. doi:10.1016/j.foodchem.2012.04.055

    Article  CAS  Google Scholar 

  20. Yuan JP, Guo WW, Wang EK (2008) Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide. Anal Chem 80:1141–1145. doi:10.1021/ac0713048

    Article  CAS  Google Scholar 

  21. Li L, Qian HF, Fang NH, Ren JC (2006) Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions. J Lumin 116:59–66. doi:10.1016/j.jlumin.2005.03.001

    Article  CAS  Google Scholar 

  22. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860. doi:10.1021/cm034081k

    Article  CAS  Google Scholar 

  23. Li SF, Li XZ, Xu J, Wei XW (2008) Flow-injection chemiluminescence determination of polyphenols using luminol-NaIO4-gold nanoparticles system. Talanta 75:32–37. doi:10.1016/j.talanta.2007.10.001

    Article  CAS  Google Scholar 

  24. Li Z, Sun RL, Ni YN, Kokot S (2014) A novel fluorescent probe involving a graphene quantum dot–enzyme hybrid system for the analysis of hydroquinone in the presence of toxic resorcinol and catechol. Anal Methods 6:7420–7425. doi:10.1039/C4AY01222D

    Article  CAS  Google Scholar 

  25. Sirajuddin BMI, Niaz A, Shah A, Rauf A (2007) Ultra-trace level determination of hydroquinone in waste photographic solutions by UV-vis spectrophotometry. Talanta 72:546–553. doi:10.1016/j.talanta.2006.11.021

    Article  CAS  Google Scholar 

  26. Afkhami A, Khatami HA (2001) Indirect kinetic-spectrophotometric determination of resorcinol, catechol, and hydroquinone. J Anal Chem 56:429–432. doi:10.1023/A:1016670818466

    Article  CAS  Google Scholar 

  27. Li MG, Ni F, Wang YL, Xu SD, Zhang DD, Chen SH, Wang L (2009) Sensitive and facile determination of catechol and hydroquinone simultaneously under coexistence of resorcinol with a Zn/Al layered double hydroxide film modified glassy carbon electrode. Electroanalysis 21:1521–1526. doi:10.1002/elan.200804573

    Article  CAS  Google Scholar 

  28. De Oliveira IRWZ, De Barros REHM, Neves A, Vieira IC (2007) Biomimetic sensor based on a novel copper complex for the determination of hydroquinone in cosmetics. Sensors Actuators B 122:89–94. doi:10.1016/j.snb.2006.05.008

    Article  CAS  Google Scholar 

  29. Li J, Liu CY, Cheng C (2011) Electrochemical detection of hydroquinone by graphene and Pt-graphene hybrid material synthesized through a microwave-assisted chemical reduction process. Electrochim Acta 56:2712–2716. doi:10.1016/j.electacta.2010.12.046

    Article  CAS  Google Scholar 

  30. Hu S, Wang YH, Wang XZ, Xu L, Xiang J, Sun W (2012) Electrochemical detection of hydroquinone with a gold nanoparticle and graphene modified carbon ionic liquid electrode. Sensors Actuators B 168:27–33. doi:10.1016/j.snb.2011.12.108

    Article  CAS  Google Scholar 

  31. Zheng LZ, Xiong LY, Li YD, Xu JP, Kang XW, Zou ZJ, Yang SM, Xia J (2013) Facile preparation of polydopamine-reduced graphene oxide nanocomposite and its electrochemical application in simultaneous determination of hydroquinone and catechol. Sensors Actuators B 177:344–349. doi:10.1016/j.snb.2012.11.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21305009), the China Postdoctoral Science Foundation (No. 2015 M572453) and the Key program of Sichuan Provincial Department of Education (No. 14ZA0059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxia Xu.

Electronic supplementary material

ESM 1

(DOCX 350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Li, J., Li, X. et al. A chemiluminescence resonance energy transfer system composed of cobalt(II), luminol, hydrogen peroxide and CdTe quantum dots for highly sensitive determination of hydroquinone. Microchim Acta 183, 667–673 (2016). https://doi.org/10.1007/s00604-015-1707-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1707-1

Keywords

Navigation