Skip to main content
Log in

Silver nanoparticle induced chemiluminescence of the hexacyanoferrate-fluorescein system, and its application to the determination of catechol

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The article describes a flow injection chemiluminescence (CL) assay for catechol. It is based on the catechol-induced reduction of the CL of a system composed of fluorescein, hexacyanoferrate(III) and silver nanoparticles in strongly alkaline solution. Under the selected conditions, the decrease in CL intensity is proportional to the concentration of catechol in the 0.1 to 10 μM range. The detection limit is 5.0 nM, and the relative standard deviation is 1.5 % (for n = 11 at a 1.0 μM concentration of catechol). The method was successfully applied to the determination of catechol in spiked environmental water samples.

The flow injection chemiluminescence (CL) assay for catechol described here is based on the catechol-induced reduction of the chemiluminescence of a system composed of fluorescein, hexacyanoferrate(III) and silver nanoparticles (AgNPs) in strongly alkaline solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Mervartová K, Polášek M, Calatayud JM (2007) Recent applications of flow injection and sequential-injection analysis techniques to chemiluminescence determination of pharmaceuticals. J Pharm Biomed Anal 45:367–381

    Article  Google Scholar 

  2. Li Q, Zhang L, Li J, Lu C (2011) Nanomaterial-amplified chemiluminescence systems and their applications in bioassays. TrAC Trends Anal Chem 30:401–413

    Article  Google Scholar 

  3. Chao Y, Zhang X, Liu L, Tian L, Pei M, Cao W (2015) Determination of hydroquinone by flow injection chemiluminescence and using magnetic surface molecularly imprinted particles. Microchim Acta 182:943–948

    Article  CAS  Google Scholar 

  4. Chen H, Gao F, He R, Cui D (2007) Chemiluminescence of luminol catalyzed by silver nanoparticles. J Colloid Interface Sci 315:158–163

    Article  CAS  Google Scholar 

  5. Alarfaj NA, Aly FA, El-Tohamy MF (2015) Application of silver nanoparticles to the chemiluminescence determination of cefditoren pivoxil using the luminol-ferricyanide system. Luminescence 30:91–97

    Article  CAS  Google Scholar 

  6. Wang L, Tang Y (2011) Determination of dipyridamole using TCPO-H2O2 chemiluminescence in the presence of silver nanoparticles. Luminescence 26:703–709

    Article  CAS  Google Scholar 

  7. Biparva P, Abedirad SM, Kazemi SY (2015) Silver nanoparticles enhanced a novel TCPO-H2O2-safraninO chemiluminescence system for determination of 6-mercaptopurine. Spectrochim Acta A 145:454–460

    Article  CAS  Google Scholar 

  8. Yu X, Jiang Z, Wang Q, Guo Y (2010) Silver nanoparticle-based chemiluminescence enhancement for the determination of norfloxacin. Microchim Acta 171:17–22

    Article  CAS  Google Scholar 

  9. Wabaidur SM, Alam SM, Alothman ZA, Mohsin K (2015) Silver nanoparticles enhanced flow injection chemiluminescence determination of gatifloxacin in pharmaceutical formulation and spiked urine sample. Spectrochim Acta A 144:170–175

    Article  CAS  Google Scholar 

  10. Wang J, Park JN, Wei XY, Lee CW (2003) Room-temperature heterogeneous hydroxylation of phenol with hydrogen peroxide over Fe2+, Co2+ ion-exchanged Na beta zeolite. Chem Commun 628–629

  11. Irons RD (1985) Quinones as toxic metabolites of benzene. J Toxicol Environ Health 16:673–678

    Article  CAS  Google Scholar 

  12. Keith LH (1991) Comilation of sampling analysis methods. US Environmental Protection Agency, Boca Raton

    Google Scholar 

  13. Afkhami A, Khatami HA (2001) Indirect kinetic-spectrophotometric determination of resorcinol, catechol and hydroquinone. J Anal Chem 56:429–432

    Article  CAS  Google Scholar 

  14. Figueiredo EC, Tarley CRT, Kubota LT, Rath S, Arruda MAZ (2007) On-line molecularly imprinted solid phase extraction for the selective spectrophotometric determination of catechol. Microchem J 85:290–296

    Article  CAS  Google Scholar 

  15. Lu L, Huang X, Dong Y, Huang Y, Pan X, Wang X, Feng M, Luo Y, Fang D (2015) Facile method for fabrication of self-supporting nanoporous gold electrodes via cyclic voltammetry in ethylene glycol, and their application to the electrooxidative determination of catechol. Microchim Acta 182:1509–1517

    Article  CAS  Google Scholar 

  16. Han JT, Huang KJ, Li J, Liu YM, Yu M (2012) β-cyclodextrin-cobalt ferrite nanocomposite as enhanced sensing platform for catechol determination. Colloids Surf B: Biointerfaces 98:58–62

    Article  CAS  Google Scholar 

  17. Zhang H, Huang Y, Hu S, Huang Q, Wei C, Zhang W, Yang W, Dong P, Hao A (2015) Self-assembly of graphitic carbon nitride nanosheets-carbon nanotube composite for electrochemical simultaneous determination of catechol and hydroquinone. Electrochim Acta 176:28–35

    Article  CAS  Google Scholar 

  18. Liu W, Li C, Tang L, Tong A, Gu Y, Cai R, Zhang L, Zhang Z (2013) Nanopore array derived from l-cysteine oxide/gold hybrids: enhanced sensing platform for hydroquinone and catechol determination. Electrochim Acta 88:15–23

    Article  CAS  Google Scholar 

  19. Wang Y, Qu J, Li S, Dong Y, Qu J (2015) Simultaneous determination of hydroquinone and catechol using a glassy carbon electrode modified with gold nanoparticles, ZnS/NiS@ZnS quantum dots and L-cysteine. Microchim Acta 182:2277–2283

    Article  CAS  Google Scholar 

  20. Feng XJ, Shi YL, Hu ZG (2011) Polyaniline/polysulfone composite film electrode for simultaneous determination of hydroquinone and catechol. Mater Chem Phys 131:72–76

    Article  CAS  Google Scholar 

  21. Lu Q, Hu H, Wu Y, Chen S, Yuan D, Yuan R (2014) An electrogenerated chemiluminescence sensor based on gold nanoparticles@C60 hybrid for the determination of phenolic compounds. Biosens Bioelectron 60:325–331

    Article  CAS  Google Scholar 

  22. Sun YG, Cui H, Li YH, Lin XQ (2000) Determination of some catechol derivatives by a flow injection electrochemiluminescent inhibition method. Talanta 53:661–666

    Article  CAS  Google Scholar 

  23. Lourenço ELB, Ferreira A, Pinto E, Yonamine M, Farsky SHP (2006) On-fiber derivatization of SPME extracts of phenol, hydroquinone and catechol with GC-MS detection. Chromatographia 63:175–179

    Article  Google Scholar 

  24. Wu YB, Wu JH, Shi ZG, Feng YQ (2009) Simultaneous determination of 5-hydroxyindoles and catechols from urine using polymer monolith microextraction coupled to high-performance liquid chromatography with fluorescence detection. J Chromatogr B 877:1847–1855

    Article  CAS  Google Scholar 

  25. Su R, Lin JM, Qu F, Chen Z, Gao Y, Yamada M (2004) Capillary electrophoresis microchip coupled with on-line chemiluminescence detection. Anal Chim Acta 508:11–15

    Article  CAS  Google Scholar 

  26. Hu Y, Li X, Pang Z (2005) Indirect chemiluminescence detection for capillary zone electrophoresis of monoamines and catechol using luminol-K3[Fe(CN)6] system. J Chromatogr A 1091:194–198

    Article  CAS  Google Scholar 

  27. Xie T, Liu Q, Shi Y, Liu Q (2006) Simultaneous determination of positional isomers of benzenediols by capillary zone electrophoresis with square wave amperometric detection. J Chromatogr A 1109:317–321

    Article  CAS  Google Scholar 

  28. Li N, Gu J, Cui H (2010) Luminol chemiluminescence induced by silver nanoparticles in the presence of nucleophiles and Cu2+. J Photochem Photobiol A Chem 215:185–190

    Article  CAS  Google Scholar 

  29. Zhang M, Xiao X, Zeng W, Zeng X, Yao H (2014) Determination of 2-methoxyestradiol in serum samples and pharmaceutical preparations by silver nanoparticles-enhanced chemiluminescence. Talanta 120:331–335

    Article  CAS  Google Scholar 

  30. Xing L, Tang Y, Wang Z, Song H, Shi X (2013) Sensitive chemiluminescence determination of phentolamine mesylate and phenoxybenzamine hydrochloride based on K3Fe(CN)6-H2O2-fluorescein. J Lumin 137:162–167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Shanxi (Grant No. 2013011013-3), Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Normal University (SD2014CXXM-50 and SD2015CXXM-79) and Shanxi Normal University of Modern Arts and Sciences (WL2014CXCY-10). All the authors express their deep thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suqin Han.

Electronic supplementary material

ESM 1

(DOC 4624 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Liu, B., Liu, Y. et al. Silver nanoparticle induced chemiluminescence of the hexacyanoferrate-fluorescein system, and its application to the determination of catechol. Microchim Acta 183, 917–921 (2016). https://doi.org/10.1007/s00604-015-1704-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1704-4

Keywords

Navigation