Skip to main content
Log in

Fluorescent aptamer-based assay for thrombin with large signal amplification using peroxidase mimetics

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This article describes an aptamer-based thrombin assay using a hemin-based peroxidase mimetic for signal amplification. Thrombin is recognized by an immobilized primary aptamer (G1-quadruplex). The G1-quadruplex/hemin complex formed quenches the fluorescence of CdTe quantum dots (QDs) due to photoinduced electron transfer (PET). In the next step, thrombin is associated with a secondary aptamer (G2-quadruplex) consisting of Pt nanoparticles (NPs), G2-quadruplex and hemin to form a sandwich structure. Both the G1-quadruplex/hemin complex and the Pt NPs/G2-quadruplex/hemin complex associated with thrombin act as enzyme mimetics and catalyze the oxidation of hydroquinone by H2O2 to form 2-hydroxy-p-benzoquinone (HPB). The HPB produced quenches the fluorescence of the CdTe QDs via a PET and an inner filter effect, thus causing large signal amplification. The effects were exploited to design a highly sensitive and selective thrombin assay. Under optimized conditions, a linear fluorescence response is achieved in the 0.05 pmol·L−1 to 10 nmol·L−1 concentration range, with a lower detection limit of 15 fmol·L−1. This approach, in our perception, represents a promising platform for sensitive detection of biomolecules for which appropriate aptamers can be found.

A sensitive fluorescent method was developed for the specific detection of thrombin. It is based on the photoinduced electron transfer (PET) induced fluorescence quenching of CdTe quantum dots (QDs) using enzyme mimetics for signal amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davie EW, Fujikawa K, Kisiel W (1991) The coagulation cascade: initiation, maintenance, and regulation. Biochem 30:10363–10370

    Article  CAS  Google Scholar 

  2. Sun AL, Jia FC, Zhang YF, Wang XN (2014) Gold nanocluster-encapsulated glucoamylase as a biolabel for sensitive detection of thrombin with glucometer readout. Microchim Acta 182:1169–1175

    Article  Google Scholar 

  3. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nat 346:818–822

    Article  CAS  Google Scholar 

  4. Zhang HF, Shuang SM, Sun LL, Chen AJ, Qin Y, Dong C (2014) Label-free aptasensor for thrombin using a glassy carbon electrode modified with a graphene-porphyrin composite. Microchim Acta 181:189–196

    Article  CAS  Google Scholar 

  5. Xu ZC, Huang XY, Dong CQ, Ren JC (2014) Fluorescence correlation spectroscopy of gold nanoparticles, and its application to an aptamer-based homogeneous thrombin assay. Microchim Acta 181:723–730

    Article  CAS  Google Scholar 

  6. Li YB, Ling LS (2015) Aptamer-based fluorescent solid-phase thrombin assay using a silver-coated glass substrate and signal amplification by glucose oxidase. Microchim Acta 182:1849–1854

  7. Huang HP, Zhu JJ (2009) DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin. Biosens Bioelectron 25:927–930

    Article  CAS  Google Scholar 

  8. Cho HS, Baker BR, Wachsmann-Hogiu S, Pagba CV, Laurence TA, Lane SM, Lee LP, Tok JBH (2008) Aptamer-based SERRS sensor for thrombin detection. Nano Lett 8:4386–4390

    Article  CAS  Google Scholar 

  9. Lin ZH, Pan D, Hu TY, Liu ZP (2015) Su XG (2015) a near-infrared fluorescent bioassay for thrombin using aptamer-modified CuInS2 quantum dots. Microchim Acta 182:1933–1939

    Article  CAS  Google Scholar 

  10. Cao YL, Shi S, Wang LL, Yao JL, Yao TM (2014) Ultrasensitive fluorescence detection of heparin based on quantum dots and a functional ruthenium polypyridyl complex. Biosens Bioelectron 55:174–179

    Article  CAS  Google Scholar 

  11. Wei X, Zhou ZP, Hao TF, Xu YP, Li HJ, Lu K, Dai JD, Zheng XD, Gao L, Wang JX, Yan YS, Zhu YZ (2015) Specific recognition and fluorescent determination of aspirin by using core-shell CdTe quantum dot-imprinted polymers. Microchim Acta 182:1527–1534

    Article  CAS  Google Scholar 

  12. Zhang HY, Feng GQ, Guo Y, Zhou DJ (2013) Robust and specific ratiometric biosensing using a copper-free clicked quantum dot–DNA aptamer sensor. Nanoscale 5:10307–10315

    Article  CAS  Google Scholar 

  13. Zhang L, Lei JP, Liu L, Li CF, Ju HX (2013) Self-assembled DNA hydrogel as switchable material for aptamer-based fluorescent detection of protein. Anal Chem 85:11077–11082

    Article  CAS  Google Scholar 

  14. Sharon E, Freeman R, Willner I (2010) CdSe/ZnS quantum dots-G-quadruplex/hemin hybrids as optical DNA sensors and aptasensors. Anal Chem 82:7073–7077

    Article  CAS  Google Scholar 

  15. Wang GL, Hu XL, Wu XM, Li ZJ (2014) Quantum dots-based glucose sensing through fluorescence quenching by bienzyme-catalyzed chromogenic substrate oxidation. Sens Actuators: B 205:61–66

    Article  CAS  Google Scholar 

  16. Guo YH, Yao WR, Xie YF, Zhou XD, Hu JM, Pei RJ (2015) Logic gates based on G-quadruplexes: principles and sensor applications. Microchim Acta. doi:10.1007/s00604-015-1633-2

    Google Scholar 

  17. Kong DM, Xu J, Shen HX (2010) Positive effects of ATP on G-quadruplex-hemin DNAzyme-mediated reactions. Anal Chem 82:6148–6153

    Article  CAS  Google Scholar 

  18. Zong C, Wu J, Liu MM, Yang LL, Liu L, Yan F, Ju HX (2014) Proximity hybridization-triggered signal switch for homogeneous chemiluminescent bioanalysis. Anal Chem 86:5573–5578

    Article  CAS  Google Scholar 

  19. Xue M, Wang X, Wang H, Tang B (2011) The preparation of glutathione-capped CdTe quantum dots and their use in imaging of cells. Talanta 83:1680–1686

    Article  CAS  Google Scholar 

  20. Zhang S, Shao YY, Yin GP, Lin YH (2009) Stabilization of platinum nanoparticle electrocatalysts for oxygen reduction using poly (diallyldimethylammonium chloride). J Mater Chem 19:7995–8001

    Article  CAS  Google Scholar 

  21. Wu FX, Lewis JW, Kliger DS, Zhang JZ (2003) Unusual excitation intensity dependence of fluorescence of CdTe nanoparticles. J Chem Phys 118:12–16

    Article  CAS  Google Scholar 

  22. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  23. Ge PY, Zhao W, Du Y, Xu JJ, Chen HY (2009) A novel hemin-based organic phase artificial enzyme electrode and its application in different hydrophobicity organic solvents. Biosens Bioelectron 24:2002–2007

    Article  CAS  Google Scholar 

  24. Xiao Y, Pavlov V, Gill R, Bourenko T, Willner I (2004) Lighting up biochemiluminescence by the surface self-assembly of DNA-hemin complexes. Chembiochem 5:374–379

    Article  CAS  Google Scholar 

  25. Cai K, Lv ZC, Chen K, Huang L, Wang J, Shao F, Wang YJ, Han HY (2013) Aqueous synthesis of porous platinum nanotubes at room temperature and their intrinsic peroxidase-like activity. Chem Commun 49:6024–6026

    Article  CAS  Google Scholar 

  26. Dong YQ, Chi YW, Lin XM, Zheng LY, Chen LC, Chen GN (2011) Nano-sized platinum as a mimic of uricase catalyzing the oxidative degradation of uric acid. Phys Chem Chem Phys 13:6319–6324

    Article  CAS  Google Scholar 

  27. García-Molina MDM, Muñoz JLM, Martinez-Ortiz F, Martinez JR, García-Ruiz PA, Rodriguez-López JN, García-Cánovas F (2014) Tyrosinase-catalyzed hydroxylation of hydroquinone, a depigmenting agent, to hydroxyhydroquinone: a kinetic study. Bioorg Med Chem 22:3360–3369

    Article  Google Scholar 

  28. Deng C, Chen J, Nie Z, Wang M, Chu X, Chen X, Xiao X, Lei C, Yao S (2009) Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles. Anal Chem 81:739–745

    Article  CAS  Google Scholar 

  29. Xie SB, Chai YQ, Yuan R, Bai LJ, Yuan YL, Wang Y (2012) A dual-amplification aptasensor for highly sensitive detection of thrombin based on the functionalized graphene-Pd nanoparticles composites and the hemin/G-quadruplex. Anal Chim Acta 755:46–53

    Article  CAS  Google Scholar 

  30. Xiao LJ, Chai YQ, Yuan R, Wang HJ, Bai LJ (2014) Highly enhanced electrochemiluminescence based on pseudo triple-enzyme cascade catalysis and in situ generation of co-reactant for thrombin detection. Analyst 139:1030–1036

    Article  CAS  Google Scholar 

  31. Bang JH, Kamat PV (2009) A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 3:1467–1476

    Article  CAS  Google Scholar 

  32. Zhang LB, Zhu JB, Guo SJ, Li T, Li J, Wang EK (2013) Photoinduced electron transfer of DNA/Ag nanoclusters modulated by G-quadruplex/hemin complex for the construction of versatile biosensors. J Am Chem Soc 135:2403–2406

    Article  CAS  Google Scholar 

  33. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Baltimore

    Book  Google Scholar 

  34. Wang GL, Jiao HJ, Liu KL, Wu XM, Dong YM, Li ZJ, Zhang C (2014) A novel strategy for the construction of photoelectrochemical sensors based on quantum dots and electron acceptor: the case of dopamine detection. Electrochem Commun 41:47–50

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.21275065), the Fundamental Research Funds for the Central Universities (JUSRP51314B) and the State Key Laboratory of Analytical Chemistry for Life Science of Nanjing University (KLACLS1008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Li Wang.

Electronic Supplementary Material

ESM 1

(DOC 462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, GL., Hu, XL., Wu, XM. et al. Fluorescent aptamer-based assay for thrombin with large signal amplification using peroxidase mimetics. Microchim Acta 183, 765–771 (2016). https://doi.org/10.1007/s00604-015-1703-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1703-5

Keywords

Navigation