Skip to main content

Advertisement

Log in

A cytosensor based on NiO nanoparticle-enhanced surface plasmon resonance for detection of the breast cancer cell line MCF-7

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The article describes the use of a designed histidine (His)-tagged arginine-glycine-aspartic acid (RGD) peptide as a linker to bind integrin to captured cancer cells, and how to amplify the surface plasmon resonance (SPR) signal after binding of NiO nanoparticles (NiO-NPs) via the His-tag on the peptide. Specifically, breast cancer cells were captured via the interaction between human mucin (MUC-1) and a gold surface modified with a MUC-selective aptamer. The resulting cytosensor exhibits specificity and high sensitivity which is due to the enhancement of the SPR signal by NiO-NPs. The breast cancer cell line MCF-7 can be easily distinguished from normal islet beta cells by using this biosensor. Implementation of the His-tagged RGD peptide modified with NiO-NPs resulted in 20-fold enhancement of the SPR signal at the limit of detection. Hence, the actual limit of detection is lowered to 136 cells per mL. In our perception, this cytosensor has a large clinical potential in that it may also be used to detect various other kinds of tumor cells.

Histidine-tagged arginine-glycine-aspartic acid peptide carried by NiO interacts with the integrin of cancer cells and amplifies the SPR signal resulting from interaction between human mucin (MUC-1) and a gold surface modified with a MUC-selective aptamer. As little as 136 cells·mL−1 are detectable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lacroix M (2006) Significance, detection and markers of disseminated breast cancer cells. Endocr Relat Cancer 13:1033–1067

    Article  CAS  Google Scholar 

  2. Weigelt B, Peterse JL, van’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    Article  CAS  Google Scholar 

  3. Koepke JA (2006) Molecular marker test standardization. Cancer 69:1578–1581

    Article  Google Scholar 

  4. Molina R, Gion M (1998) Use of blood tumor markers in the detection of recurrent breast cancer. Breast 7:187–189

    Article  Google Scholar 

  5. BrooksPC CRA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571

    Article  Google Scholar 

  6. Hood J, Cheresh D (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100

    Article  Google Scholar 

  7. Pierschbacher MD, Ruoslahti E (1984) The cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33

    Article  CAS  Google Scholar 

  8. Baron R, Zayats M, Willner I (2005) Dopamine-, l-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem 77:1566–1571

    Article  CAS  Google Scholar 

  9. Sha MY, Xu HX, Natan MJ, Cromer R (2008) Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J Am Chem Soc 130:17214–17215

    Article  CAS  Google Scholar 

  10. Acharya G, Chang CL, Doorneweerd DD, Vlashi E, Henne WA, Hartmann LC, Low PS, Savran CA (2007) Immunomagnetic diffractometry for detection of diagnostic serum markers. J Am Chem Soc 129:15824–15829

    Article  Google Scholar 

  11. Bailey RC, Kwong GA, Radu CG, Witte ON, Heath JR (2007) DNA-encoded antibody libraries: a unified platform for multiplexed cell sorting and detection of genes and proteins. J Am Chem Soc 129:1959–1967

    Article  CAS  Google Scholar 

  12. Zhou M, Shah R, Shen RL, Rubin MA (2003) Basal cell cocktail (34[beta] E12 + p63) improves the detection of prostate basal cells. Am J Surg Pathol 27:365–371

    Article  Google Scholar 

  13. Liu L, Zhu X, Zhang D, Huang J, Li G (2007) An electrochemical method to detect folate receptor positive tumor cells. Electrochem Commun 9:2547–2550

    Article  CAS  Google Scholar 

  14. Hayden O, Bindeus R, Dickert FL (2003) Mass-sensitive detection of cells, viruses and enzymes with artificial receptors. Sens. Actuators B 93:316–319

    Article  CAS  Google Scholar 

  15. He F, Shen Q, Jiang H, Zhou J, Cheng J, Guo D, Li Q, Wang X, Fu D, Chen B (2009) Rapid identification and high sensitive detection of cancer cells on the gold nanoparticle interface by combined contact angle and electrochemical measurements. Talanta 77:1009–1014

    Article  CAS  Google Scholar 

  16. Liu Q, Yu J, Xiao L, Tang JCO, Zhang Y, Wang P, Yang M (2009) Impedance studies of bio-behavior and chemosensitivity of cancer cells by micro-electrode arrays. Biosens. Bioelectron. 24:1305–1310

    Article  CAS  Google Scholar 

  17. Andreescu S, Sakik OA (2005) Advanced electrochemical sensors for cell cancer monitoring. Methods 37:84–93

    Article  CAS  Google Scholar 

  18. Li T, Fan Q, Liu T, Zhu XL, Zhao J, Li G (2010) Detection of breast cancer cells specially and accurately by an electrochemical method. Biosens. Bioelectron. 25:2686–2689

    Article  CAS  Google Scholar 

  19. Chen H, Gal YS, Kim SH, Choi HJ, Oh MC, Lee J, Koh K (2008) Potassium ion sensing using a self-assembled calix[4]crown monolayer by surface Plasmon resonance. Sens. Actuators, B 133:577–581

    Article  CAS  Google Scholar 

  20. Rich RL, Myszka DG (2005) Survey of the year 2004 commercial optical biosensor literature. J Mol Recognit 18:431–478

    Article  CAS  Google Scholar 

  21. Shankaran DR, Gobi KV, Miura N (2007) Recent advancements in surface Plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens. Actuators, B 121:158–177

    Article  CAS  Google Scholar 

  22. Whelan RJ, Wohland T, Neumann L, Huang B, Kobilka BK, Zare RN (2002) Analysis of biomolecular interactions using a miniaturized surface Plasmon resonance sensor. Anal Chem 74:4570–4579

    Article  CAS  Google Scholar 

  23. Robelek R, Wegener J (2010) Label-free and time-resolved measurements of cell volume changes by surface Plasmon resonance (SPR) spectroscopy. Biosens. Bioelectron. 25:1221–1224

    Article  CAS  Google Scholar 

  24. Chen H, Hou Y, Ye Z, Wang H, Koh K, Shen Z, Shu Y (2007) Label-free surface Plasmon resonance cytosensor for breast cancercell detection based on Nano-conjugation of monodisperse magnetic nanoparticle and folic acid. Sens. Actuators, B 201:433–438

    Article  CAS  Google Scholar 

  25. Lei P, Tang H, Ding S, Ding X, Zhu D, Shen B, Cheng Q, Yan Y (2015) Determination of the inva gene of salmonella using surface Plasmon resonance along with streptavidin aptamer amplification. Microchim Acta 182:289–296

    Article  CAS  Google Scholar 

  26. Chen H, Mei Q, Hou Y, Koh K, Lee J, Chen B, Fang L, Zhao X (2013) Building a sensitive immunosensing platform based on oriented immobilization of histidine-tagged antibody on NiO-decorated SWNTs. Sens. Actuators, B 181:38–43

    Article  CAS  Google Scholar 

  27. Ganesana M, Istarnboulie G, Marty JL, Noguer T, Andreescu S (2011) Site-specific immobilization of a (his)6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors. Biosens. Bioelectron. 30:43–48

    Article  CAS  Google Scholar 

  28. Lo Y-S, Nam DH, So H-M, Chang H, Kim J, Kim Y, Lee J-O (2009) Oriented immobilization of antibody fragmentson Ni-decorated single-walled carbon nanotube devices. AcsNano 3:3649–3655

    CAS  Google Scholar 

  29. Shi X, Gu W, Li B, Chen N, Zhao K, Xian Y (2014) Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim Acta 181:1–22

    Article  CAS  Google Scholar 

  30. Uchida M, Flenniken ML, Allen M, Willits DA, Crowley BE, Brumfield S, Willis AF, Jackiw L, Jutila M, Young MJ, Douglas T (2006) Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J Am Chem Soc 128:16626–16633

    Article  CAS  Google Scholar 

  31. Toriello N. M, Douglas E. S, Mathies R. A (2005) Microfluidic device for electric field-driven single-cell capture and activation. Anal Chem 77: 6935–6941.

  32. Chen H, Qi F, Zhou H, Jia S, Gao Y, Koh K, Yin Y (2015) Fe3O4@Au nanoparticles as a means of signal enhancement in surface Plasmon resonance spectroscopy for thrombin detection,. Sen Actuators, B 212:505–511

    Article  CAS  Google Scholar 

  33. Zhu X, Yang J, Liu M, Wu Y, Shen Z, Li G (2013) Sensitive detection of human breast cancer cells based on aptamer–cell–aptamer sandwich architecture. Anal Chim Acta 764:59–63

    Article  CAS  Google Scholar 

  34. Yan M, Sun G, Liu F, Lu J, Yu J, Song X (2013) An aptasensor for sensitive detection of human breast cancer cells by using porous GO/Au composites and porous PtFe alloy as effective sensing platform and signal amplification labels. Anal Chim Acta 798:33–39

    Article  CAS  Google Scholar 

  35. Wei W, Li D, Pan X, Liu S (2012) Electrochemiluminescent detection of mucin 1 protein and MCF-7 cancer cells based on the resonance energy transfer. Analyst 137:2101–2106

    Article  CAS  Google Scholar 

  36. Hua X, Zhou Z, Yuan L, Liu S (2013) Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based Nano-bio-probes. Anal Chim Acta 788:135–140

    Article  CAS  Google Scholar 

  37. Zhao J, Zhang L, Chen C, Jiang J, Yu R (2012) A novel sensing platform using aptamer and RNA polymerase-based amplification for detection of cancer cells. Anal Chim Acta 745:106–111

    Article  CAS  Google Scholar 

  38. Song Y, Chen Y, Feng L, Ren J, Qu X (2011) Selective and quantitative cancer cell detection using target-directed functionalized graphene and its synergetic peroxidase-like activity. Chem Commun 47:4436–4438

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61275085, 31100560).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, S., Li, P., Koh, K. et al. A cytosensor based on NiO nanoparticle-enhanced surface plasmon resonance for detection of the breast cancer cell line MCF-7. Microchim Acta 183, 683–688 (2016). https://doi.org/10.1007/s00604-015-1700-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1700-8

Keywords

Navigation