Microchimica Acta

, Volume 183, Issue 2, pp 697–707 | Cite as

SERS based point-of-care detection of food-borne pathogens

  • Nawfal Adam Mungroo
  • Gustavo Oliveira
  • Suresh Neethirajan
Original Paper


The authors have developed a microfluidic platform for improved detection of pathogenic bacteria by using silver nanoparticles and new platforms for chemometric data analysis, viz. a combination of principle component analysis and linear discriminant analysis. The method can distinguish eight key foodborne pathogens (E. coli, S. typhimirium, S. enteritis, Pseudomonas aeruginosa, L. monocytogenes, L. innocua, MRSA 35 and MRSA 86) and, hence, holds good promise for use in the food industry.

Graphical Abstract

A microfluidic and surface-enhanced Raman scattering substrate integrated biosensing platform involving silver nanoparticles is demonstrated for rapid and on-site detection and discrimination of polymicrobial food-borne pathogenic bacteria.


Microfluidics Food safety Food analysis Principle component analysis Linear discriminant analysis Silver nanoparticles Raman spectroscopy 


  1. 1.
    Griffiths M (2005) Understanding pathogen behaviour: virulence, stress response, and resistance. CRC Press, EnglandCrossRefGoogle Scholar
  2. 2.
    Centers for Disease Control and Prevention (2011) Estimates of Foodborne illness in the United States http://www.cdc.gov/Features/dsFoodborneEstimates/. Accessed 26 June 2015
  3. 3.
    Martins TD, Ribeiro ACC, Dias DL, Cavalcante HPM, de Camargo HS, da Costa Filho PA (2013) New insights on optical biosensors: techniques, construction and application. Intech, CroatiaGoogle Scholar
  4. 4.
    Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DM, Jensen AB, Wegener HC, Aarestrup FM (2011) Global monitoring of Salmonella serovar distribution from the World Health Organization global foodborne infections network country data bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis 8:887–900. doi:10.1089/fpd.2010.0787 CrossRefGoogle Scholar
  5. 5.
    Ibrahim SA, Asakir SF, Idris AA, Martinez-Urtaza J, Elsafi HH (2013) Prevalence of Salmonella species among asymptomatic food handlers in Khartoum State, Sudan. Br J Biomed Sci 70:88–89Google Scholar
  6. 6.
    Talabi AO, Etonyeaku AC, Sowande OA, Olowookere SA, Adejuyigbe O (2014) Predictors of mortality in children with typhoid ileal perforation in a Nigerian tertiary hospital. Pediatr Surg Int 30:1121–1127. doi:10.1007/s00383-014-3592-9 CrossRefGoogle Scholar
  7. 7.
    Noris M, Remuzzi G (2005) Hemolytic uremic syndrome. J Am Soc Nephrol 16:1035–1050. doi:10.1681/ASN.2004100861 CrossRefGoogle Scholar
  8. 8.
    Breidenstein EB, de la Fuente-Núñez C, Hancock RE (2011) Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19:419–426. doi:10.1016/j.tim.2011.04.005 CrossRefGoogle Scholar
  9. 9.
    Centers for Disease Control and Prevention (2014) Pseudomonas aeruginosa in Healthcare Settings http://www.cdc.gov/hai/organisms/pseudomonas.html. Accessed 30 Aug 2015
  10. 10.
    Cartwright EJ, Jackson KA, Johnson SD, Graves LM, Silk BJ, Mahon BE (2013) Listeriosis outbreaks and associated food vehicles, United States, 1998–2008. Emerg Infect Dis 19:1–9. doi:10.3201/eid1901.120393 CrossRefGoogle Scholar
  11. 11.
    Wilder JR, Wegener DT, David MZ, Macal C, Daum R, Lauderdale DS (2014) A national survey of skin infections, care behaviors and MRSA nnowledge in the United States. PLoS One 19:e104277. doi:10.1371/journal.pone.0104277 CrossRefGoogle Scholar
  12. 12.
    Crago B, Ferrato C, Drews SJ, Svenson LW, Tyrrell G, Louie M (2012) Prevalence of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in food samples associated with foodborne illness in Alberta, Canada from 2007 to 2010. Food Microbiol 32(1):202–205. doi:10.1016/j.fm.2012.04.012 CrossRefGoogle Scholar
  13. 13.
    Hoffmann S, Batz MB, Morris Jr JG (2012) Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens. J Food Protect 75:1292–1302. doi:10.4315/0362-028X CrossRefGoogle Scholar
  14. 14.
    Schlosser E (2012) Fast food nation: the dark side of the all-American meal. Mariner Books, New YorkGoogle Scholar
  15. 15.
    Roda A, Mirasoli M, Roda B, Bonvicini F, Colliva C, Reschiglian P (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178:7–28. doi:10.1007/s00604-012-0824-3 CrossRefGoogle Scholar
  16. 16.
    Kelley SO, Mirkin CA, Walt DR, Ismagilov RF, Toner M, Sargent EH (2014) Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. Nat Nanotechnol 9:969–980. doi:10.1038/nnano.2014.261 CrossRefGoogle Scholar
  17. 17.
    Safavieh M, Ahmed MU, Tolba M, Zourob M (2012) Microfluidic electrochemical assay for rapid detection and quantification of Escherichia coli. Biosens Bioelectron 31:523–528. doi:10.1016/j.bios.2011.11.032 CrossRefGoogle Scholar
  18. 18.
    Innis MA, Gelfand DH, Sninsky JJ, White TJ (2012) PCR protocols: a guide to methods and applications. Academic Press, WalthamGoogle Scholar
  19. 19.
    Mühldorfer I, Schäfer KP (2001) Emerging bacterial pathogens (Vol. 8). Karger Medical and Scientific Publishers, BaselCrossRefGoogle Scholar
  20. 20.
    Pieczonka NP, Aroca RF (2008) Single molecule analysis by surfaced-enhanced Raman scattering. Chem Soc Rev 37:946–954. doi:10.1039/B709739P CrossRefGoogle Scholar
  21. 21.
    Chen L, Mungroo N, Daikuara L, Neethirajan S (2015) Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids. J Nanobiotechnol 13:1–9. doi:10.1186/s12951-015-0106-4 CrossRefGoogle Scholar
  22. 22.
    Zhou H, Yang D, Mircescu NE, Ivleva NP, Schwarzmeier K, Wieser A, Haisch C (2015) Surface-enhanced Raman scattering detection of bacteria on microarrays at single cell levels using silver nanoparticles. Microchim Acta 182:2259–2266. doi:10.1007/s00604-015-1570-0 CrossRefGoogle Scholar
  23. 23.
    Juvé V, Cardinal MF, Lombardi A, Crut A, Maioli P, Pérez-Juste J, Vallée F (2013) Size-dependent surface Plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods. Nano Lett 13:2234–2240. doi:10.1021/nl400777y CrossRefGoogle Scholar
  24. 24.
    Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25. doi:10.1038/nrmicro2259 CrossRefGoogle Scholar
  25. 25.
    Sundaram J, Park B, Hinton A, Lawrence KC, Kwon Y (2013) Detection and differentiation of Salmonella serotypes using surface enhanced Raman scattering (SERS) technique. J Food Meas Charact 7:1–12. doi:10.1007/s11694-012-9133-0
  26. 26.
    Su L, Zhang P, Zheng D, Wang Y, Zhong R (2015) Rapid detection of Escherichia coli and Salmonella typhimurium by surface-enhanced Raman scattering. Optoelectron Lett 11:157–160. doi:10.1007/s11801-015-4216-x
  27. 27.
    Wang J, Xie X, Feng J, Chen JC, Du X, Luo J, Lu X, Wang S (2015) Rapid detection of Listeria monocytogenes in milk using confocal micro-Raman spectroscopy and chemometric analysis. Int J Food Microbiol 204:66–74. doi:10.1016/j.ijfoodmicro.2015.03.021

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Nawfal Adam Mungroo
    • 1
  • Gustavo Oliveira
    • 1
  • Suresh Neethirajan
    • 1
  1. 1.Bionano Laboratory, School of EngineeringUniversity of GuelphGuelphCanada

Personalised recommendations