Skip to main content

Advertisement

Log in

Determination of TiO2 nanoparticles in sunscreen using N-doped graphene quantum dots as a fluorescent probe

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The article describes a method for the determination of titanium oxide nanoparticles (TiO2NPs) in sunscreens using N-doped graphene quantum dots (N-GQDs). The TiO2-NPs are first extracted from the highly lipophilic sunscreen via liquid-liquid extraction. Subsequent fluorimetric analysis of the extracts is based on the quenching effect exerted by TiO2NPs on the fluorescence of N-GQDs. The effect is assumed to be due to an electrostatic interaction and/or hydrogen bonding between the particles. The limit of detection for TiO2NPs is 1.4 μg⋅g‾1. The precision at a 5 μg⋅g‾1 concentration of TiO2NPs is 6.95 %. The optimized procedure was successively applied to the determination of TiO2 NPs in sunscreens with different sun protection factors.

A method for the determination of TiO2 nanoparticles (NPs) in sunscreens using N-doped graphene quantum dots (N-GQDs) is described. TiO2 NPs are extracted via liquid-liquid extraction and subsequently quantified by fluorimetric analysis of the quenching effect on the fluorescence of N-GQDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Contado C, Pagnoni A (2008) TiO2 in commercial sunscreen lotion: flow field-flow fractionation and ICP-AES together for size analysis. Anal Chem 80:7594–7608. doi:10.1021/ac8012626

    Article  CAS  Google Scholar 

  2. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250. doi:10.1021/es204168d

    Article  CAS  Google Scholar 

  3. Nazarenko Y, Zhen H, Han T, Lioy PJ, Mainelis G (2012) Potential for inhalation exposure to engineered nanoparticles from nanotechnology-based cosmetic powders. Environ Health Perpect 120:885–892. doi:10.1289/ehp.1104350

    Article  CAS  Google Scholar 

  4. Salvador A, Chisvert A (2005) Sunscreen analysis: a critical survey on UV filters determination. Anal Chim Acta 537:1–14. doi:10.1016/j.aca.2005.01.055

    Article  CAS  Google Scholar 

  5. Nischwitz V, Goenaga-Infante H (2012) Improved sample preparation and quality control for the characterisation of titanium dioxide nanoparticles in sunscreens using flow field flow fractionation on-line with inductively coupled plasma mass spectrometry. J Anal At Spectrom 27:1084–1092. doi:10.1039/C2JA10387G

    Article  CAS  Google Scholar 

  6. Popov AP, Lademann J, Priezzhev AV, Myllylä R (2005) Effect of size of TiO2 nanoparticles embedded into stratum corneum on ultraviolet-a and ultraviolet-B sun-blocking properties of the skin. J Biomed Opt 10:1–9. doi:10.1117/1.2138017

    Article  CAS  Google Scholar 

  7. Furukawa F, Doi Y, Suguro M, Morita O, Kuwahara H, Masunaga T, Hatekeyama Y, Mori F (2011) Lack of skin carcinogenicity of topically applied titanium dioxide nanoparticles in the mouse. Food Chem Toxicol 49:744–749. doi:10.1016/j.fct.2010.11.036

    Article  CAS  Google Scholar 

  8. Freyre-Fonseca V, Delgado-Buenrostro NL, Gutierrez-Cirlos EB, Calderon-Torres CM, Cabellos-Avelar T, Sanchez-Perez Y, Pinzon E, Torres I, Molina-Jijon E, Zazueta C, Pedraza-Chaverri J, Garcia-Cuellar CM, Chirino YI (2011) Titanium dioxide nanoparticles impair lung mitochondrial function. Toxicol Lett 202:111–119. doi:10.1016/j.toxlet.2011.01.025

    Article  CAS  Google Scholar 

  9. Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, Santamaria AB (2006) Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci 89:42–50. doi:10.1093/toxsci/kfi339

    Article  CAS  Google Scholar 

  10. Kim YS, Kim BM, Park SC, Jeong HJ, Chang JS (2006) A novel volumetric method for quantitation of titanium dioxide in cosmetics. J Cosmet Sci 57:377–381. doi:10.1111/j.1467-2494.2007.00369_2.x

    CAS  Google Scholar 

  11. Mason JT (1980) Quantitative determination of titanium in a commercial sunscreen formulation by atomic absorption spectrometry. J Pharm Sci 69:101–102. doi:10.1002/jps.2600690131

    Article  CAS  Google Scholar 

  12. Salvador A, Pascual-Martí MC, Adell JR, Requeni A, March JG (2000) Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen creams. J Pharm Biomed Anal 22:301–306. doi:10.1016/S0731-7085(99)00286-1

    Article  CAS  Google Scholar 

  13. Melquiades FL, Ferreira DD, Appoloni CR, Lopes F, Lonni AG, Oliveira FM, Duarte JC (2008) Titanium dioxide determination in sunscreen by energy dispersive X-ray fluorescence methodology. Anal Chim Acta 613:135–143. doi:10.1016/j.aca.2008.02.058

    Article  CAS  Google Scholar 

  14. Contado C, Pagnonia A (2010) TiO2 Nano- and micro-particles in commercial foundation creams: field flow-fractionation techniques together with ICP-AES and SQW voltammetry for their characterization. Anal Methods 2:1112–1124. doi:10.1039/C0AY00205D

    Article  CAS  Google Scholar 

  15. Samontha A, Shiowatana J, Siripinyanond A (2011) Particle size characterization of titanium dioxide in sunscreen products using sedimentation field-flow fractionation-inductively coupled plasma-mass spectrometry. Anal Bioanal Chem 399:973–978. doi:10.1007/s00216-010-4298-z

    Article  CAS  Google Scholar 

  16. Krystek P, Tentschert J, Nia Y, Trouiller B, Noël L, Goetz ME, Papin A, Luch A, Guérin T, de Jong WH (2014) Method development and inter-laboratory comparison about the determination of titanium from titanium dioxide nanoparticles in tissues by inductively coupled plasma mass spectrometry characterisation of nanomaterials in biological samples. Anal Bioanal Chem 406:3853–3861. doi:10.1007/s00216-013-7580-z

    CAS  Google Scholar 

  17. Geertsen V, Tabarant M, Spalla O (2014) Behavior and determination of titanium dioxide nanoparticles in nitric acid and river water by ICP spectrometry. Anal Chem 86:3453–3460. doi:10.1021/ac403926r

    Article  CAS  Google Scholar 

  18. Dong Y, Chen C, Zheng X, Gao L, Cui Z, Yang H, Guo C, Chi Y, Li CM (2012) One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J Mater Chem 22:8764–8766. doi:10.1039/C2JM30658A

    Article  CAS  Google Scholar 

  19. Kim S, Hwang SW, Kim MK, Shin DY, Shin DH, Kim CO, Yang SB, Park JH, Hwang E, Choi SH, Ko G, Sim S, Sone C, Choi HJ, Bae S, Hong BH (2012) Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano 6:8203–8208.doi:10.1021/nn302878r.

  20. Shen J, Zhu Y, Yang X, Zong J, Zhang J, Li C (2012) One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J Chem 36:97–101. doi:10.1039/C1NJ20658C

    Article  CAS  Google Scholar 

  21. Benítez–Martínez S, Valcárcel M (2014) Graphene quantum dots as sensor for phenols in olive oil. Sensors Actuators B Chem 197:350–357. doi:10.1016/j.snb.2014.03.008

    Article  CAS  Google Scholar 

  22. Benítez-Martínez S, López-Lorente AI, Valcárcel M (2014) Graphene quantum dots sensor for the determination of graphene oxide in environmental water samples. Anal Chem 86:12279–12284. doi:10.1021/ac5035083

    Article  CAS  Google Scholar 

  23. Li X, Zhu S, Xu B, Ma K, Zhang K, Yang B, Tian W (2013) Self-assembled graphene quantum dots induced by cytochrome c: a novel biosensor for trypsin with remarkable fluorescence enhancement. Nanoscale 5:7776–7779. doi:10.1039/C3NR00006K

    Article  CAS  Google Scholar 

  24. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738–4743. doi:10.1016/j.carbon.2012.06.002

    Article  CAS  Google Scholar 

  25. Tam TV, Trung NB, Kim HR, Chung JS, Choi WM (2014) One-pot synthesis of N-doped graphene quantum dots as a fluorescent sensing platform for Fe3+ ions detection. Sensors Actuators B Chem 202:568–573. doi:10.1016/j.snb.2014.05.045

    Article  CAS  Google Scholar 

  26. Qu D, Zheng M, Zhang L, Zhao H, Xie Z, Jing X, Haddad RE, Fan H, Sun Z (2014) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Reports 4:5294. doi:10.1038/srep05294

    CAS  Google Scholar 

  27. Li C, Wang F, Yu JC (2011) Seminconductor/biomolecular composites for solar energy applications. Energy Environ Sci 4:100–113. doi:10.1039/C0EE00162G

    Article  CAS  Google Scholar 

  28. Campbell WM, Burrell AK, Officer DL, Jolley KW (2004) Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coord Chem Rev 248:1363–1379. doi:10.1016/j.ccr.2004.01.007

    Article  CAS  Google Scholar 

  29. Langel W, Menken L (2003) Simulation of the interface between titaniun oxide and amino acids of anatase and rutenium surface. Surf Sci 538:1–9. doi:10.1016/S0039-6028(03)00723-4

    Article  CAS  Google Scholar 

  30. Wu ZL, Gao MX, Wang TT, Wan XY, Zheng LL, Huang CZ (2014) A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots. Nanoscale 6:3868–3874. doi:10.1039/c3nr06353d

    Article  CAS  Google Scholar 

  31. Yan Z, Yu Y, Chen J (2015) Glycine-functionalized carbon quantum dots as chemiluminescence sensitization for detection of m-phenylendiamine. Anal Methods 7:1133–1139. doi:10.1039/C4AY02124J

    Article  CAS  Google Scholar 

  32. Li L, Li L, Wang C, Liu K, Zhu R, Qiang H, Lin Y (2015) Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorimetric determination of ferric ion. Microchim Acta 182:763–770. doi:10.1007/s00604-014-1383-6

    Article  CAS  Google Scholar 

  33. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice Jr CA, Ruoff RS (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47:145–152. doi:10.1016/j.carbon.2008.09.045

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Spain’s Ministry of Economy and Competitivity for funding Project CTQ2014-52939R and Junta de Andalucía for Project FQM4801. S. Benítez-Martínez is also grateful to Junta de Andalucía for the award of a Research Training Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Valcárcel.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

ESM 1

(DOCX 207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benítez-Martínez, S., López-Lorente, Á.I. & Valcárcel, M. Determination of TiO2 nanoparticles in sunscreen using N-doped graphene quantum dots as a fluorescent probe. Microchim Acta 183, 781–789 (2016). https://doi.org/10.1007/s00604-015-1696-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1696-0

Keywords

Navigation